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Geometric Graphs and Graph Signals Transferability of Geometric Graph Neural Networks Manifold Deformations as Operator Perturbations Large-scale Wireless Power Allocation
» Signals on geometric graphs appear in several application domains » Geometric graph filters and GNNs converge to their manifold counterparts » Stability to deformations is a distinguishable property of CNNs » We test the trained GNN in other ad-hoc networks of fixed size and density
= Wireless communication networks, 3D point clouds, Climate data = Enables transferability of geometric GNNs from small to large graphs » Stability of MNNs to deformations can be generalized to GNNs and CNNs = The GNN remains optimal across permutations of ad-hoc networks
= Consider manifold signal f and a deformation 7(x) over the manifold . . . .
» Sample the manifold at {x;}7 ,. Construct graph Laplacian of G, with edges | Ad-hoc network with 25 pairs Ad-hoc network with 50 pairs
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» Geometric graph filter is defined by replacing with graph Laplacians L, Theorem (Manifold deformations) | MEEQ 1 o rr M é éz% : 8
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» We develop a limit theory of signal processing (SP) on geometric graphs Geometric graph neural networks on Gy, = ®(H, L. ) L—-L =EL+ A, J_W MEWMMSE “ e | iJWl\’fMSE
— Geometric graphs converge (or are sampled from) Manifolds where E and A satisfy ||E[| = O(e) and [|Al|o = O(e). T N ety e

= Convergence. Stability. Wireless Networks. Vector Fields

Lipschitz and Frequency Difference Threshold (FDT) Filters » We test in other networks of increasing size and fixed density
= The GNN transfers to larger ad-hoc networks with no need of retraining
Manifold Convolutional Filters > A filter is Ap-Lipschitz if its frequency response h()) is As-Lipschitz Integral Lipschitz and Frequency Ratio Threshold (FRT) Filters Ad-hos network with 25 pairs Ad-hoc network with 50 pairs
» Partition spectrum such that A\; and \; are in different partitions if |\; — \;| > o e | | | |
» Manifold M c RN is d-dimensional with Laplace-Beltrami (LB) operator £ > Afilteris a-FDTif |h(A;) — h(A;)] < op for all A;, ; in the same partition > Afilteris By-Integral Lipschitz it its frequency response satisfies V |
» A Manifold filter with coefficients h is defined by the input-output relationship ‘f,(a) _ ﬁ,(b)’ < Bp|a — b‘j for all a, b € (0, 00) g _éffﬁfNN
. o (@+D)/2 i
_ h L f(xYdt = h f h(A)*’/ T~ 'd " .. - e | E 2
g(x) = ; (t) e " f(x)dt = h(L)f(x). ~J\ [l ‘ ‘ { > Partition spectrum such that \; and ); are in different partitions if |5 — 1 ‘ > : | ‘/\/\/
» Discretizing a manifold filter yields a graph filter with shift operator e~ s%» 0 N A N N N > Afilteris 7-FRTIF[A(A) = h(A)] < o for all A;, Ay in the same partition _gjﬁa?NN M
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> Recover standard convolutions if we make the particular choice £ — d/dX Z. Wang, M. Eisen, and A. Ribeiro. "Learning decentralized wireless resource allocations with graph neural net-
y P - Convergence of Geometric GNNs to MNNs 0 AN A " As N works.” IEEE Transactions on Signal Processing 70 (2022): 1850-1863.
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» Discriminate frequency components that are relatively far from each other
» Manifold convolutions generalize standard (time) and graph convolutions UEeiRet ([SPMTEEIEEs O (EEEMIEe CINNS) B leN IN k
If an L-layer MNN ®(H, £, -) on M and GNN ®(H, L, -) on G, have normalized Tangent Bundle Neural Networks
Lipschitz nonlinearities, it holds in high probability that Stability of Manifold Neural Networks
. . . . » MNNSs process scalar signals over the manifold w/o covering vector fields
Spectral Representation of Manifold Convolutional Filters N » We define Tangent Bundle convolution with the Connection Laplacian A
| 2H. L, Pt - PodH.LA| <O K— +Ah) \/51 Jert By - ’ P
0 L(Gin) Theorem (Stability of MNNSs to deformations) » The tangent bundle filter with impulse response h: R™ — R is given by
» LB operator admits discrete spectral decomposition = Lf = Z Ailf, @i) i An L-layer MNN ®(H. £, f) have normalized Lipschitz continuous nonlinearities. G(x) = ” h(t)e' F(x)dt = h(A)F(x)
=1 with filters that are o-FDT with 6p < O(\/¢/«) and Ap-Lipschitz continuous. / - _ Jo - '
» Manifold Fourier Transform of f is the set of projections = [f]; = (f, ¢;) x Let £’ be the deformed LB operator with max{«, 2, |y/1 — 7|} > ¢, then )
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» Frequency response of filter his = A(A) :/ h(f)et\dt » The properties of large GNNs can be analyzed via MNN as their limit H B(H.£.1)— BH.L.1 col(Noa M g Connection Laplacian has spectral decomposition AF Z (F, pi) i
» The error bounds show trade-off between discriminability and approximation T T ey o L ~ g =1
, , , . . » Tangent bundle Fourier Transform is the projections = []—"} = (F, O,
Theorem (Manifold Filters in the Manifold Spectral Domain) J P JOO i W @i
Manifold filters are pointwise in the spectral domain = [g]; = h()\))|[f]; o " : if the manifold filters are o-FDT with op < O(e/a), v-FRT with og < O(¢/7), » Frequency response of filter his =h()\) :/ h(t)e dt
Training through Transferability on Point Clouds Ay-Lipschitz continuous and By-integral Lipschitz continuous. 0
» Manifold filters are easy to study in the manifold frequency (spectral) domain
- — » The difference bound shows a trade-off between stability and discriminability
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» A MNN is a cascade of L layers y1x) = M(£)Fx) ) =2 n) o = o
Layer 1 300 400 500 600 700 800 900 0.207 —}— GNN2LyNoPel
» Each of the layers is composed of hx) 2, ~Harord Architecture ‘= 0.2 0 0 0.4 0
| | f(x) Graph Filters GNN Lipschitz GNN GNN2Ly 7.37% +1.43% | 7.71% + 3.96%
=- Manifold convolutions h(£) . n=1300121.15% -+ 3.48% | 9.35% + 2.46% | 7.63% - 3.36% Soo GF2Ly 13.76% £+ 6.82% | 13.54% = 7.16%
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_ Pointwise nonlinearities o ya(X) = ha(L)f (x) B(x) = o (ya(x)) n=50018.09% + 6.28%  7.80% 4 3.50% | 7.54% + 4.01% Architecture e=0.6 0.8 - -
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» Group learnable coefficients in H " A n— 900 | 15.58% + 4.54% 7.20% + 3.77% | 6.68% & 3.94% GF2ly | 14.76%+567% 16.04% + 6.34% Visualization of Earth wind field
» Write MNN as map y = ®(H, £, f) Z. Wang, L. Ruiz, and A. Ribeiro. "Geometric Graph Filters and Neural Networks: Limit Properties and Discrim- . v 2, . & C. Batiloro, Z. Wang, H. Riess, F. Di Lorenzo and A. Ribeiro. "Tangent Bundle Convolutional Learning: from
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