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Filtering in Non-Euclidean Domains

» Applications involving geometric data have gained increasing attention
= E.g., wireless communication networks, point clouds for 3D models

Ad-hoc network
W Point clouds

» Graph convolutional filtering and manifold convolutional filtering have
become the prominent choices for non-Euclidean signal processing

» Convolutional filtering provides the fundamental block for constructing deep
learning architectures which helps establish geometric deep learning

Graphs (Sampled Manifolds) can approximate Manifolds

Fact Graphs with well-defined limits can be sampled from a manifold

» We relate manifold convolutional filters with graph convolutional filters

Our Contributions

» Construct convolutional filters on graphs sampled from the manifold

» Derive difference bounds between the graph Laplacian and
Laplace-Beltrami operator from the operator and spectral aspects

» Show graph filtering converges to the manifold filtering with n~1/(2+8)

» Carry out experiments with navigation control and point cloud classification

Graph Signal Processing - Graph Filters

» Graph G with matrix S — graph shift operator — and graph signal x € R"
» Graph convolutional filter is defined as a summation of iterative graph shifts
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» The symmetric matrix S admits the eigenvector decomposition S = VAV"

Spectral Representation of Graph Filters

K—1
Consider graph signal x and the filtered signal y = > hS*x. The Graph
k=0

Fourier Transforms (GFTs) X = Vfx and §y = V"y are reﬂated by
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Manifold Signal Processing — Manifold Filters

» d-dimensional manifold M c RN support manifold signals — f € L?(M)
» Laplace-Beltrami (LB) operator —
Lf = —div(VT)

» Manifold convolutional filter is the integration of the heat diffusion dynamics

~

g(x) = (hf)(x) = /O " h(t)e £ H(x)dt = h(L)(x)

» [ is self-adjoint and positive semi-definite — a discrete spectrum {\;, ¢;}icn+

Spectral Representation of Manifold Filters

Consider manifold filter with impulse response h(t), manifold signal f(x) and
the filtered signal g(x) = [,~ h(t)e~*dtf(x). The frequency components when
projecting on the eigenfunctions [?],- = (f, i) 12y @Nd [9]; = (9, @i) 12\ are
related by
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Graph Laplacian approximation of the LB operator

Proposition (Difference of Spectrum)

Let M C RN be equipped with LB operator £ whose spectrum is given by
{\i, 9i}7,. Let G, be the discrete graph sampled u.i.d. from M, with edge
weights set with ¢ = ¢(n) > n='/(9%4% and graph Laplacian L¢, with spectrum
(X, @ 44 Fix K € N and assume e = ¢(n) > n~/(?+%)_Then, with proba-

bility at least 1 — 2e~", we have

X — Ml < Qive, @i, — @il < Qav/e

with g; = {—1,1} for all j < K.

. K—1
» The graph filter frequency response is point-wise — h(\) = > Ak
k=0

» The manifold filter frequency response is point-wise — f)()\) = [y h(t)e " \dt

Sampled Manifolds as Graphs

» Graphs on sampled points with geometric structure — sampled manifold

= X = {Xx1, X2, ..., Xp} are ndiscrete points sampled uniformly from M

= The weight value connecting points x; and Xx; is set as a Gaussian kernel
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= Adjacency matrix [Ap]; = w; = Laplacian matrix L}, = diag(A,1) — A,

Filtering on Sampled Manifolds

» Graph signal is a sampled manifold signal with a sampling operator P,
f=P,fwith [f]; = f(x;), Xx;j€ X,
» Manifold filter can operate on the graph Laplacian in continuous time

g :/ h(t)e fdt = h(L))f, g,feR"
0

» The frequency representation with the spectrum of L, — {\¢ . ¢ }7
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Graph Laplacian spectrum approximation of the LB operator

Proposition (Difference of Laplacian operators)

Let M c RN be equipped with LB operator £ whose spectrum is given by
{Ai, @i}, and assume ¢; € C(M). Let G, be the discrete graph sampled
u.i.d. from M, with edge weights set with ¢ = ¢(n) > n=1/(9+4%) and graph

Laplacian L¢. It holds with probability at least 1 — ¢ that

ILhoi(x) — Li(Xx)] < <C1 ln(;réa) + Czﬁ) \E

Frequency Dependent Filters

Definition (a-separated spectrum)
The a-separated spectrum of a LB operator £ is defined as the partition

A(a)U...UAN(a) such that all A; € Ag(a) and X; € A/(«), k # I, satisfy

|)\,' — Aj‘ > (.

Definition (a-FDT filter)

The frequency response of a-frequency Difference threshold (a-FDT) filter
h(L) satisfies
|A(N) — AON)| < 0k, forall A, \j € Ag(e)

with o, < dfork=1.2.... n.

Convergence of Graph Filtering

Theorem (Convergence of Graph Filtering)

Let G, be a discrete graph sampled from manifold M. Let h(-) be the con-
volutional filter parameterized by the discrete graph Laplacian operator L, or
the LB operator L. If it holds that

(H1) Weight values in G, are set with ¢ = ¢(n) > n=1/(d+4)

(H2) Frequency response of h is A, Lipschitz continuous and non-amplifying
(H3) Filter h is a-FDT with o > ¢ and § = Q5+/¢/«, then the following holds

in probability at least 1 — 2n—2
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» Observe the trade-off between the approximation and discriminability
» Transferability can be derived based on this non-asymptotic error bound
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Navigation Control
» We evaluate the graph filtering approximation with navigation control

» We predict the potential direction leading to the goal point based on
generated trajectories
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Experiments on graphs n =413

Experiments on graphs n= 1117

Navigation Control Convergence and Transferability Results

» We train the graph filters on small graphs and plot the output differences
» We verify the transferability by testing the trained graph filters on n = 1225

0.40 )
—— 1Ly Graph Filter

1Ly GF|2Ly GF
n—435 074  0.74
n—630 079 0.8
n—780 | 0.81 | 08

\ n=1225 0.82 | 0.83
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Pointcloud Model Classification Result

» We evaluate the graph filtering approximation with ModelNet10 classification

» Plot the graph output differences between trained graphs and a large graph
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» Graph filters can converge to manifold filters as more points are sampled

Pointcloud Model Classification Transferability Result

» We verify the transferability by testing the trained graph filters on n = 1000

.‘.

i 1Ly Graph Filter | 2Ly Graph Filter
Pt

SNy n=30021.15% + 3.48% 19.25% + 3.47%

n=500|18.09% + 6.28%  17.80% =+ 7.52%

3::'.5 n=70017.31% + 6.59%|14.16% + 5.93%

“&%5 n=900|1558% +4.54% 12.21% = 5.74%
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Table: Error rates testing on n = 1000

» Transferability allows trained graph filters directly applied to a large graph

Jun 4-10, 2023

Email: {zhiyangw,aribeiro}@seas.upenn.edu; ruizl@mit.edu



