
IEEE TRANSACTIONS ON SIGNAL PROCESSING (ACCEPTED) 1

Supplemental Materials

A. Proof of Proposition 2

Weyl’s law in [35] states that if M is a compact connected
oriented Riemannian manifold of dimension d then

N(λ) ∼ Cd

(2π)d
V ol(M)λd/2 with N(λ) := #{λk ≤ λ}.

(123)
Since eigenvalues of the LB operator L are 0 < λ1 ≤ λ2 ≤
λ3 · · · repeated according to its multiplicity, we can have

λk ∼ (2π)2

(CdV ol(M))2/d
k2/d, (124)

where Cd denotes the volume of the unit ball of Rd and V ol(M)
is the volume of manifold M. This indicates that λk grows
with the same order of the magnitude with (2π)2

(CdV ol(M))2/d
k2/d.

With this asymptotic equivalence relationship, we can have

λk+1 −
(2π)2(k + 1)2/d

(CdV ol(M))2/d
= o

(
(2π)2(k + 1)2/d

(CdV ol(M))2/d

)
, (125)

(2π)2

(CdV ol(M))2/d
k2/d − λk = o(λk) (126)

Therefore, for any constant C1 > 0, we can find some K1(C1) >
0, which indicates that K1 depends on C1, such that for all
k > K1(C1), we have

λk+1 −
(2π)2(k + 1)2/d

(CdV ol(M))2/d
<

C1(2π)
2(k + 1)2/d

(CdV ol(M))2/d
. (127)

Similarly, for any constant C2 > 0, we can find some K2(C2) >
0, such that for all k > K2(C2), we have

(2π)2

(CdV ol(M))2/d
k2/d − λk < C2λk. (128)

Therefore from (127) and (128) we can get upper and lower
bound for λk+1 and λk respectively. If

(1 + C1)(k + 1)2/d − k2/d

1 + C2
≤ α(V ol(M)Cd)

2/d

4π2
, (129)

we can have λk+1 − λk ≤ α. The left side can be scaled down
to

(k+1)2/d−k2/d ≥ min{1+C1,
1

1 + C2
}2
d
k2/d−1 =

C0

d
k2/d−1

This implies that

k ≥
(
αd(V ol(M)Cd)

2/d

C04π2

) d
2−d

, (130)

with d > 2, we can claim that for all k > K0(C0) =
max{K1(C1),K2(C2)}, if k satisfies

k ≥
⌈( αd

C04π2

)d/(2−d)

(CdVol(M))2/(2−d)
⌉
,

it holds that λk+1 − λk ≤ α. Proof of Proposition 3 is similar
and is also based on (124).

B. Proof of Proposition 5

Considering that the discrete points {x1, x2, . . . , xn} are
uniformly sampled from manifold M with measure µ, the
empirical measure associated with dµ can be denoted as
pn = 1

n

∑n
i=1 δxi , where δxi is the Dirac measure supported

on xi. Similar to the inner product defined in the L2(M) space
(4), the inner product on L2(Gn) is denoted as

⟨u, v⟩L2(Gn) =

∫
u(x)v(x)dpn =

1

n

n∑
i=1

u(xi)v(xi). (131)

The norm in L2(Gn) is therefore ∥u∥2L2(Gn)
= ⟨u, u⟩L2(Gn),

with u, v ∈ L2(M). For signals u,v ∈ L2(Gn), the inner
product is therefore ⟨u,v⟩L2(Gn) =

1
n

∑n
i=1[u]i[v]i. From here

we write ∥ · ∥L2(Gn) as ∥ · ∥ for simplicity.
We first import the existing results from [47] which indicates

the spectral convergence of the constructed Laplacian operator
based on the graph Gn to the LB operator of the underlying
manifold.

Theorem 6 (Theorem 2.1 [47]). Let X = {x1, x2, ...xn} be a
set of n points sampled i.i.d. from a d-dimensional manifold
M ⊂ RN . Let Gn be a graph approximation of M constructed
from X with weight values set as (37) with tn = n−1/(d+2+α)

and α > 0. Let Ln be the graph Laplacian of Gn and L be the
Laplace-Beltrami operator of M. Let λn

i be the i-th eigenvalue
of Ln and ϕn

i be the corresponding normalized eigenfunction.
Let λi and ϕi be the corresponding eigenvalue and eigenfunction
of L respectively. Then, it holds that

lim
n→∞

λn
i = λi, lim

n→∞
|ϕn

i (xj)− ϕi(xj)| = 0, j = 1, 2 . . . , n

(132)
where the limits are taken in probability.

With the definitions of neural networks on graph Gn and
manifold M, the output difference can be written as

∥Φ(H,Ln,Pnf)−PnΦ(H,L, f))∥ =

∥∥∥∥∥
FL∑
q=1

xq
L −

FL∑
q=1

Pnf
q
L

∥∥∥∥∥
≤

FL∑
q=1

∥xq
L −Pnf

q
L∥ . (133)

By inserting the definitions, we have

∥xp
l −Pnf

p
l ∥

=

∥∥∥∥∥∥σ
Fl−1∑

q=1

hpq
l (Ln)x

q
l−1

−Pnσ

Fl−1∑
q=1

hpq
l (L)fq

l−1

∥∥∥∥∥∥
(134)

with x0 = Pnf as the input of the first layer. With a normalized
Lipschitz nonlinearity, we have

∥xp
l −Pnf

p
l ∥ ≤

∥∥∥∥∥∥
Fl−1∑
q=1

hpq
l (Ln)x

q
l−1 −Pn

Fl−1∑
q=1

hpq
l (L)fq

l−1

∥∥∥∥∥∥
(135)

≤
Fl−1∑
q=1

∥∥hpq
l (Ln)x

q
l−1 −Pnh

pq
l (L)fq

l−1

∥∥ (136)
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The difference can be further decomposed as

∥hpq
l (Ln)x

q
l−1 −Pnh

pq
l (L)fq

l−1∥
≤ ∥hpq

l (Ln)x
q
l−1 − hpq

l (Ln)Pnf
q
l−1

+ hpq
l (Ln)Pnf

q
l−1 −Pnh

pq
l (L)fq

l−1∥ (137)

≤
∥∥hpq

l (Ln)x
q
l−1 − hpq

l (Ln)Pnf
q
l−1

∥∥
+
∥∥hpq

l (Ln)Pnf
q
l−1 −Pnh

pq
l (L)fq

l−1

∥∥ (138)

The first term can be bounded as ∥xq
l−1 − Pnf

q
l−1∥ with the

initial condition ∥x0 − Pnf0∥ = 0. The second term can be
denoted as Dn

l−1. With the iteration employed, we can have

∥Φ(H,Ln,Pnf)−PnΦ(H,L, f)∥ ≤
L∑

l=0

L∏
l′=l

Fl′D
n
l .

Therefore, we can focus on the difference term Dn
l , we omit

the feature and layer index to work on a general form.

∥h(Ln)Pnf −Pnh(L)f∥

=

∥∥∥∥∥
n∑

i=1

ĥ(λn
i )⟨Pnf,ϕ

n
i ⟩Gn

ϕn
i −

∞∑
i=1

ĥ(λi)⟨f,ϕi⟩MPnϕi

∥∥∥∥∥
(139)

We decompose the α-FDT filter function as ĥ(λ) = h(0)(λ)+∑
l∈Km

h(l)(λ) as equations (76) and (77) show. With the
triangle inequality and n > Nα = maxi{λi ∈ [Λk(α)]k∈Ks

},
we start by analyzing the output difference of h(0)(λ) as∥∥∥∥∥

Nα∑
i=1

h(0)(λn
i )⟨Pnf,ϕ

n
i ⟩Gn

ϕn
i −

Nα∑
i=1

h(0)(λi)⟨f,ϕi⟩MPnϕi

∥∥∥∥∥
≤

∥∥∥∥∥
Nα∑
i=1

(
h(0)(λn

i )− h(0)(λi)
)
⟨Pnf,ϕ

n
i ⟩Gnϕ

n
i

∥∥∥∥∥
+

∥∥∥∥∥
Nα∑
i=1

h(0)(λi) (⟨Pnf,ϕ
n
i ⟩Gn

ϕn
i − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥ .
(140)

The first term in (140) can be bounded by leveraging the
Ah-Lipschitz continuity of the frequency response. From the
convergence in probability stated in (132), we can claim that
for each eigenvalue λi ≤ λNα

, for all ϵi > 0 and all δi > 0,
there exists some Ni such that for all n > Ni, we have

P(|λn
i − λi| ≤ ϵi) ≥ 1− δi, (141)

Letting ϵi < ϵ with ϵ > 0, with probability at least
∏M

i=1(1−
δi) := 1− δ, the first term is bounded as

∥∥∥∥∥
Nα∑
i=1

(h(0)(λn
i )− h(0)(λi))⟨Pnf,ϕ

n
i ⟩Gn

ϕn
i

∥∥∥∥∥
≤

Nα∑
i=1

|h(0)(λn
i )− h(0)(λi)||⟨Pnf,ϕ

n
i ⟩Gn

|∥ϕn
i ∥ (142)

≤
Nα∑
i=1

Ah|λn
i − λi|∥Pnf∥∥ϕn

i ∥2 ≤ NsAhϵ, (143)

for all n > max{maxi Ni, Nα} := N .

The second term in (140) can be bounded combined with the
convergence of eigenfunctions in (145) as∥∥∥∥∥

Nα∑
i=1

h(0)(λi) (⟨Pnf,ϕ
n
i ⟩Gn

ϕn
i − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥
≤

∥∥∥∥∥
Nα∑
i=1

h(0)(λi) (⟨Pnf,ϕ
n
i ⟩Gnϕ

n
i − ⟨Pnf,ϕ

n
i ⟩GnPnϕi)

∥∥∥∥∥
+

∥∥∥∥∥
Nα∑
i=1

h(0)(λi) (⟨Pnf,ϕ
n
i ⟩Gn

Pnϕi − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥
(144)

From the convergence stated in (132), we can claim that for
some fixed eigenfunction ϕi, for all ϵi > 0 and all δi > 0, there
exists some Ni such that for all n > Ni, we have

P(|ϕn
i (xj)− ϕi(xj)| ≤ ϵi) ≥ 1− δi, for all xj ∈ X. (145)

Therefore, letting ϵi < ϵ with ϵ > 0, with probability at least∏M
i=1(1− δi) := 1− δ, for all n > max{maxi Ni, Nα} := N ,

the first term in (144) can be bounded as∥∥∥∥∥
Nα∑
i=1

h(0)(λi) (⟨Pnf,ϕ
n
i ⟩Gnϕ

n
i − ⟨Pnf,ϕ

n
i ⟩MPnϕi)

∥∥∥∥∥
≤

Nα∑
i=1

∥Pnf∥∥ϕn
i −Pnϕi∥ ≤ Nsϵ, (146)

because the frequency response is non-amplifying as stated in
Assumption 1. The last equation comes from the definition of
norm in L2(Gn). The second term in (144) can be written as∥∥∥∥∥

Nα∑
i=1

h(0)(λn
i )(⟨Pnf,ϕ

n
i ⟩Gn

Pnϕi − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥
≤

Nα∑
i=1

|h(0)(λn
i )| |⟨Pnf,ϕ

n
i ⟩Gn

− ⟨f,ϕi⟩M| ∥Pnϕi∥. (147)

Because {x1, x2, · · · , xn} is a set of uniform sampled points
from M, based on Theorem 19 in [48] we can claim that there
exists some N such that for all n > N

P (|⟨Pnf,ϕ
n
i ⟩Gn

− ⟨f,ϕi⟩M| ≤ ϵ) ≥ 1− δ, (148)

for all ϵ > 0 and δ > 0. Taking into consider the boundedness
of frequency response |h(0)(λ)| ≤ 1 and the bounded energy
∥Pnϕi∥. Therefore, we have for all ϵ > 0 and δ > 0,

P

(∥∥∥∥∥
Nα∑
i=1

h(0)(λn
i ) (⟨Pnf,ϕ

n
i ⟩Gn

− ⟨f,ϕi⟩M)Pnϕi

∥∥∥∥∥ ≤ Nsϵ

)
≥ 1− δ, (149)

for all n > N .
Combining the above results, we can bound the output

difference of h(0)(λ). Then we need to analyze the output
difference of h(l)(λ) and bound this as∥∥∥Pnh

(l)(L)f − h(l)(Ln)Pnf
∥∥∥

≤
∥∥∥(ĥ(Cl) + δ)Pnf − (ĥ(Cl)− δ)Pnf

∥∥∥ ≤ 2δ∥Pnf∥,
(150)
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where h(l)(L) and h(l)(Ln) are filters with filter function h(l)(λ)
on the LB operator L and graph Laplacian Ln respectively.
Combining the filter functions, we can write

∥Pnh(L)f − h(Ln)Pnf∥

=

∥∥∥∥∥Pnh
(0)(L)f +Pn

∑
l∈Km

h(l)(L)f−

h(0)(Ln)Pnf −
∑
l∈Km

h(l)(Ln)Pf

∥∥∥∥∥ (151)

≤ ∥Pnh
(0)(L)f − h(0)(Ln)Pnf∥+∑

l∈Km

∥Pnh
(l)(L)f − h(l)(Ln)Pnf∥. (152)

Above all, we can claim that there exists some N , such that
for all n > N , for all ϵ′ > 0 and δ > 0, we have

P(∥h(Ln)Pnf −Pnh(L)f∥ ≤ ϵ′) ≥ 1− δ. (153)

With lim
n→∞

Dn
l = 0 in high probability, this concludes the

proof.
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