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A. Proof of Proposition
Weyl’s law in [35] states that if M is a compact connected
oriented Riemannian manifold of dimension d then
Cy

N(\) ~ WVOZ(M)W? with N(\) == #{\x < A}
(123)

Since eigenvalues of the LB operator £ are 0 < A1 < Ao <

A3 -+ - repeated according to its multiplicity, we can have
(2m)? 2/d
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where Cy denotes the volume of the unit ball of R? and V ol(M)
is the volume of manifold M. This indicates that A\, grows

with the same order of the magnitude with %

With this asymptotic equivalence relationship, we can have
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)\k+1 - (CdVOl(M))Q/d - <(CdVOZ(M))2/d> 5 (125)
2

(CdV(lekQ/d ~ Ak = o(A) (126)

Therefore, for any constant C; > 0, we can find some K; (Cy) >
0, which indicates that K7 depends on C1, such that for all
k > K1(C1), we have

(2m)?(k 4 1)%/4
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(127)
Similarly, for any constant Cy > 0, we can find some Ko(Cs) >
0, such that for all k& > K5(Cs3), we have
(27)?
(CaVol(M))?/d

Therefore from and (128) we can get upper and lower
bound for A1 and Ay respectively. If

k24— N < Col. (128)

k2/d - a(Vol(M)Cy)?/?

2/d _
(A4 Ok + 1) = 7 < = :

(129)

we can have A1 — Ap < . The left side can be scaled down
to

1
1+Co

(k+1)2/d—k’2/d Z min{1+017 }3k2/d71 — %kﬂ/d*l

This implies that
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k> (ad(VOl(./\/l)Cd) > 7 (130)
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with d > 2, we can claim that for all £ > Ky(Cy) =
max{K7(C1), K2(Cs)}, if k satisfies

ad \ YD \a
k> [ (Co4772) (CaVol(M)) —‘7

it holds that Ag11 — A < . Proof of Proposition [3|is similar
and is also based on (124).
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B. Proof of Proposition

Considering that the discrete points {z1,z2,...,z,} are
uniformly sampled from manifold M with measure u, the
empirical measure associated with du can be denoted as
pn = 13" | 64,, where &, is the Dirac measure supported
on ;. Similar to the inner product defined in the L?(M) space
@), the inner product on L?(G,,) is denoted as

n

(u,v)r2(G,) = /u(x)v(x)dpn = %Zu(ajz)v(m) (131)

=1

The norm in L*(Gy,) is therefore [|ul[72q, ) = (u,u)r2(G,)s
with u,v € L2(M). For signals u,v € L?(G,), the inner
product is therefore (u,v)z2(q,) = < Y°"" | [u];[v];. From here
we write || - [|z2(g,,) as || - || for simplicity.

We first import the existing results from [47] which indicates
the spectral convergence of the constructed Laplacian operator
based on the graph G,, to the LB operator of the underlying
manifold.

Theorem 6 (Theorem 2.1 [47]). Let X = {x1,x9,...x,} be a
set of n points sampled i.i.d. from a d-dimensional manifold
M C RV, Let G,, be a graph approximation of M constructed
from X with weight values set as with t,, = n~1/(d+2+a)
and o > 0. Let L,, be the graph Laplacian of G,, and £ be the
Laplace-Beltrami operator of M. Let A" be the i-th eigenvalue
of L,, and ¢; be the corresponding normalized eigenfunction.
Let A\; and ¢; be the corresponding eigenvalue and eigenfunction
of L respectively. Then, it holds that

(132)

Hm A7 = \;,

n—oo

where the limits are taken in probability.

With the definitions of neural networks on graph G,, and
manifold M, the output difference can be written as

FL FL

q q
DXt =D Pufi
g=1 q=1

||¢'(Ha anpnf) - an,(Ha L, f))” =

(133)

By inserting the definitions, we have

17 = Pofy|
Fp_y

=19 Z hi (L, )x]
g=1

Fi_1

1| = Pno thq(ﬁ)flqﬂ H
=1
(134)

with xg = P, f as the input of the first layer. With a normalized
Lipschitz nonlinearity, we have

Fi_q Fi_1
%P =Py P < > b (La)xi, =P, Y WL,
q=1 q=1
(135)
Fyy

< | L)xf_, — Puhli(L) S| (136)
q=1
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The difference can be further decomposed as

[y (L)xi_y — Prby? (L) fiL4 |

< [y (L )x;_y — by (L) P fil 4
+ b (L) P fily = Puby? (L) L4 (137)
< thq(Ln)X?q - hfq(Ln)PnfquH
+ [0 (L) Py fil ) = Pubi*(£)fL, ]| (138)
The first term can be bounded as ||x{ ; — P, f’ ;|| with the
initial condition ||xo — P, fo|| = 0. The second term can be

denoted as Dj* ;. With the iteration employed, we can have

L L
<> I #Dr.

1=0 I'=Il

|®(H, Ly, Py, f) — Pr®(H, L, f)]

Therefore, we can focus on the difference term D', we omit
the feature and layer index to work on a general form.

Ih(L,)Py f — Poh(L)f]
= Z ()\n)< nf7¢n G d)n Zh fv¢z>MPn¢zH
=1 =1 (139)

We decompose the a-FDT filter function as h(\) = (O (\)+
> ek, RO(N) as equations (76) and show. With the
triangle inequality and n > N, = max;{\; € [Ax(a)|kex.},
we start by analyzing the output difference of 2(?)()\) as

'O P, e, F — Zh“”

i=1
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(140)

The first term in (I40) can be bounded by leveraging the
Ap-Lipschitz continuity of the frequency response. From the
convergence in probability stated in (I32), we can claim that
for each eigenvalue \; < Ay, for all ¢, > 0 and all §; > 0,
there exists some NV; such that for all n > N;, we have

PN — N <€) > 1 -4, (141)

Letting ¢; < € with € > 0, with probability at least Hi]\il(l —
0;) := 1 —, the first term is bounded as

N,
Z RO M) = KON (P, o), dF

DPnf, ), o7l (142)

AR AL = Xl [P fINB2 12 < NoApe, (143)
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for all n > max{max; N;, N} := N

The second term in (I40) can be bounded combined with the
convergence of eigenfunctions in (I43) as

Pnf7 ¢?>Gn¢;ﬂ - <f7 ¢2>MP7L¢)Z)

N,

Zh(o)()\ nf7¢ >G d)n < nf7 ¢£L>GnPn¢z) ‘
N

SO W) (Pof, e, Pudi — (f. @WP@»H
=1

(144)

From the convergence stated in (132), we can claim that for
some fixed eigenfunction ¢;, for all €; > 0 and all §; > 0, there
exists some N, such that for all n > N;, we have

P(|¢i (zj) — pi(xj)] <€) > 1 =0,

Therefore, letting €¢; < € with € > 0, with probability at least
Hf\il(l — ;) :=1—94, for all n > max{max; N;, N,}:= N,
the first term in (I44) can be bounded as

for all z; € X. (145)

ON\) (P f, oM, dF — (Pof, o) mProhi)

Na
<> IP.flllef

i=1

—PLoi|| < Nge, (146)

because the frequency response is non-amplifying as stated in
Assumption [T} The last equation comes from the definition of
norm in L?(G,,). The second term in (T44) can be written as

eI

P.f,¢!)c.Pnoi — (f, di) mMProi)

G, — ([ @) ml[[Pnpil|. (147)
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Because {1,229, -+ ,Z,} is a set of uniform sampled points
from M, based on Theorem 19 in [48]] we can claim that there
exists some N such that for all n > N

P(Pnf, ¢i)a, = (f, ¢

for all € > 0 and 6§ > 0. Taking into consider the boundedness
of frequency response |h(?)()\)] < 1 and the bounded energy
|P.,¢;||. Therefore, we have for all € > 0 and § > 0,

< N, se)

Na
'
i=1
, (149)

for all n > N.

Combining the above results, we can bound the output
difference of h(®)()\). Then we need to analyze the output
difference of A(Y)(\) and bound this as

idm| <€) >1—=19, (148)

<Pnfa ¢;L>Gn - <fa ¢1>M)

>1-96

HPnh(”(ﬁ) 7 —hOw,P, fH
(h(C) + )P f — (M(C))

- 5)Pnf

| < 26lIP,
(150)
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where h(¥)(£) and h¥) (L,,) are filters with filter function () (\)
on the LB operator £ and graph Laplacian L, respectively.
Combining the filter functions, we can write

P,hO(L)f+P, Y h(L)f-
ekm

hO(L,)P,f - Y h(L,)Pf

lekm
< [P, h (L) f —hO(L,)P, f||+

> IPuh (L) f —hD(L,)P,fll. (152)

ek

‘ (151)

Above all, we can claim that there exists some NV, such that
for all n > N, for all ¢ > 0 and 6 > 0, we have

With lim D = 0 in high probability, this concludes the

n—oo
proof.
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