

Manifold Filters and Neural Networks: Geometric Graph Signal Processing in the Limit

Zhiyang Wang

Electrical and Systems Engineering University of Pennsylvania

zhiyangw@seas.upenn.edu
http://zhiyangwang.net

April 10 2025

Large-scale Geometric Graphs in Practice

- Neural networks have been the choice Efficient solutions are needed over massive amounts of data
- ► Graph neural networks process information over very large graphs scalable and stable solutions
 - ⇒ E.g., wireless communication systems, robotic control systems, point clouds

Cellular network

Collaborative robots

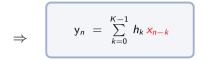
Point clouds

► We study continuous limits of graph NNs as the size of graph grows to infinity ⇒ manifold NNs

► Continuous limit model brings insights into sampled discrete models ⇒ graphs and images

► Continuous models easier for theoretical insights ⇔ Discrete models easier for practical application

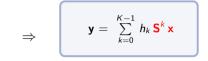
 Convolutional filters in time are linear combinations of time shifted inputs with the time shift operator

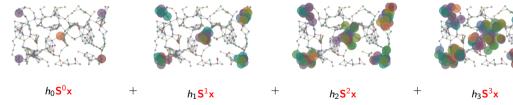


$$h_0 \times_n + h_1 \times_{n-1} + h_2 \times_{n-2} + h_3 \times_{n-3}$$

Convolutional neural networks (CNNs) compose layers of convolutional filters and non-linearities

► Graph convolutional filters are linear combinations of polynomials on graph matrix representations





► Graph neural networks (GNNs) compose layers of graph filters and point-wise non-linearities

Manifold convolutional filters are linear combinations of Laplace-Beltrami operator exponentials

$$g(x) = \int_0^\infty h(t) e^{-t\mathcal{L}} f(x) dt$$

$$h(0T_s)e^{-0T_s\mathcal{L}}f$$

$$h(1T_s)e^{-1T_s\mathcal{L}}f$$

$$h(1T_s)e^{-1T_s\mathcal{L}}f$$
 + $h(2T_s)e^{-2T_s\mathcal{L}}f$ + $h(3T_s)e^{-3T_s\mathcal{L}}f$

$$h(3T_s)e^{-3T_s\mathcal{L}}f$$

Manifold neural networks (MNNs) compose layers of manifold filters and point-wise non-linearities

Manifold convolutional filters are linear combinations of Laplace-Beltrami operator exponentials

$$g(x) \approx \sum_{k=0}^{\infty} h(kT_s) e^{-kT_s \mathcal{L}} f(x)$$

$$h(0T_s)e^{-0T_s\mathcal{L}}f$$

$$h(1T_s)e^{-1T_s\mathcal{L}}f$$

$$h(1T_s)e^{-1T_s\mathcal{L}}f$$
 + $h(2T_s)e^{-2T_s\mathcal{L}}f$ + $h(3T_s)e^{-3T_s\mathcal{L}}f$

$$h(3T_s)e^{-3T_s\mathcal{L}}f$$

Manifold neural networks (MNNs) compose layers of manifold filters and point-wise non-linearities

My Research Core

My research focuses on utilizing MNNs to understand fundamental properties of GNNs $\,$

CNNs on discrete time/image signals converge to CNNs on continuous time/image signals

Sample from high res to low res

Deform from high res

- ► CNNs have two fundamental properties derived from continuous limits that explain their performances
 - ⇒ Scalability: Training CNNs with small images is sufficient for transferring to larger images
 - ⇒ Stability: CNNs are stable to deformations, which captures the invariance of nature
- D. Owerko et al., Transferability of Convolutional Neural Networks in Stationary Learning Tasks, arXiv:2307.11588
- S. Mallat, Group invariant scattering, Communications on Pure and Applied Mathematics

► Graph convolutions are algebraically equivalent to standard convolutions on images

Sample from high res to low res

Deform from high res

► Can we derive these two fundamental properties for GNNs to explain their performances?

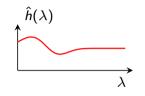
Fundamental Properties of GNNs Derived from MNNs

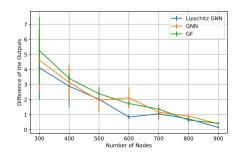
► Graph convolutions are algebraically equivalent to standard convolutions on images

- ► GNNs have two fundamental properties derived from MNNs to understand their performances
 - ⇒ Scalability: Convergence of GNNs to MNNs implies transferability of GNNs across scales
 - ⇒ Stability: Stability of MNNs to manifold deformations reveals stability of GNNs

► GNNs converge to the underlying MNNs provided the filters satisfy spectral continuity conditions

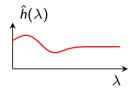
$$\left\| \Phi(\mathbf{H}, \mathbf{L}_n, \mathbf{P}_n f) - \mathbf{P}_n \Phi(\mathbf{H}, \mathcal{L}, f) \right\| = O\left[\left(\frac{N}{\alpha} + \mathbf{A}_h \right) \sqrt{\xi} + \frac{\log(n)}{n} \right] \|f\|_{L^2(\mathcal{M})}$$





► GNNs converge to the underlying MNNs provided the filters satisfy spectral continuity conditions

$$\left\| \Phi(\mathbf{H}, \mathbf{L}_n, \mathbf{P}_n f) - \mathbf{P}_n \Phi(\mathbf{H}, \mathcal{L}, f) \right\| = O\left[\left(\frac{N}{\alpha} + \mathbf{A}_h \right) \sqrt{\xi} + \frac{\log(n)}{n} \right] \|f\|_{L^2(\mathcal{M})} \right]$$

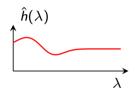


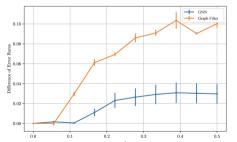
GNNs trained on small graphs with continuous filters are able to transfer to large graphs

Z. Wang et al, Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-offs, IEEE Trans on Signal Processing

► Stability of MNNs to manifold deformations implies stability of GNNs with continuous filters

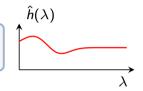
$$\left\| \Phi(\mathbf{H}, \mathcal{L}, f) - \Phi(\mathbf{H}, \mathcal{L}', f) \right\| = O\left[\left(\frac{N}{\alpha} + A_h + \frac{M}{\gamma} + B_h \right) \epsilon \right] \|f\|_{L^2(\mathcal{M})}$$





► Stability of MNNs to manifold deformations implies stability of GNNs with continuous filters

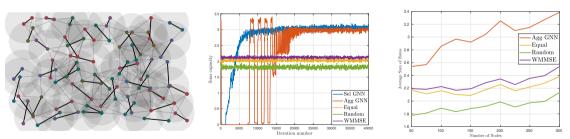
$$\left\| \Phi(\mathsf{H},\mathcal{L},f) - \Phi(\mathsf{H},\mathcal{L}',f) \right\| = O\left[\left(\frac{N}{\alpha} + \mathsf{A}_h + \frac{\mathsf{M}}{\gamma} + \mathsf{B}_h \right) \epsilon \right] \|f\|_{L^2(\mathcal{M})}$$



GNNs with continuous filters are stable to deformations

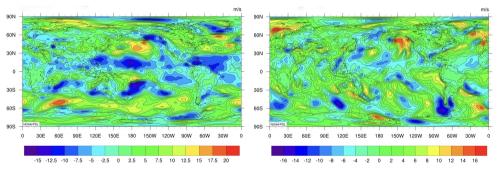
Z. Wang et al., Stability to Deformations of Manifold Filters and Manifold Neural Networks, IEEE Trans on Signal Processing

- ▶ Train GNNs for optimal resource allocation policies under system constraints in ad-hoc networks
 - ⇒ GNN is trained over a family of wireless networks ⇒ Possible because of stability
 - ⇒ GNN transfers to larger networks without retraining ⇒ Possible because of transferability



Z. Wang et al., Learning decentralized wireless resource allocations with graph neural networks, IEEE Trans on Signal Processing

- ► MNNs process scalar signals over manifolds ⇒ vector fields arise in some applications
- ▶ We define tangent bundle convolution and further construct tangent bundle neural networks



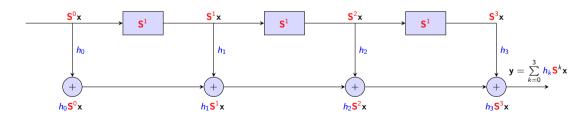
Visualization of Earth wind field

C. Battiloro, **Z. Wang**, et al., *Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back*, IEEE Trans on Signal Processing

Graph Filters and Graph Neural Networks

- ▶ Graph **G** with matrix representation $\mathbf{S} \in \mathbb{R}^{n \times n}$ graph shift operator and graph signal $\mathbf{x} \in \mathbb{R}^n$
- Graph convolutional filter is defined as a summation of iterative graph data diffusions

$$\mathbf{y} = \mathbf{h_G}(\mathbf{S})\mathbf{x} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$
 - filter with coefficients h_k



► The matrix **S** (which is symmetric) admits the eigenvector decomposition $\mathbf{S} = \mathbf{V} \Lambda \mathbf{V}^H$

Spectral Representation of Graph Filters

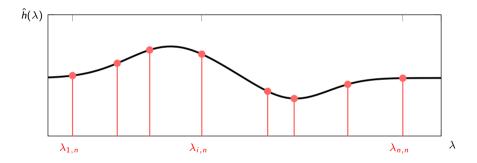
Graph filter with coefficients h_k , graph signal x and the filtered signal y

$$\mathbf{y} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x} = \mathbf{h}(\mathbf{S}) \mathbf{x}$$

The Graph Fourier Transforms (GFTs) $\hat{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$ and $\hat{\mathbf{y}} = \mathbf{V}^H \mathbf{y}$ are related by

$$\hat{\mathbf{y}} = \sum_{k=0}^{K-1} h_k \mathbf{\Lambda}^k \hat{\mathbf{x}} = \hat{h}(\mathbf{\Lambda}) \hat{\mathbf{x}}$$

► The graph filter frequency response is point-wise on a scalar variable $-\hat{h}(\lambda) = \sum_{k=0}^{K-1} h_k \lambda^k$



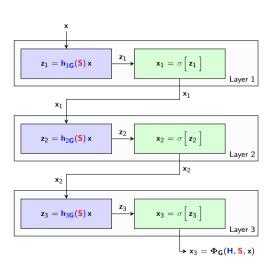
- A given graph instantiates the frequency response on its given specific eigenvalues $\lambda_{i,n}$
- ▶ Eigenvectors do not appear in the frequency response. They determine the meaning of frequencies

Graph Neural Networks (GNNs)

► Graph neural network is a cascade of *L* layers

- Each of the layers is composed of graph convolutions h_G(S) and pointwise nonlinearities σ
- ► Define the learnable parameter set in h_G(S) as H

lacktriangle GNN can be written as a map $oldsymbol{y} = \Phi_{oldsymbol{\mathsf{G}}}(oldsymbol{\mathsf{H}}, oldsymbol{\mathsf{S}}, oldsymbol{\mathsf{x}})$



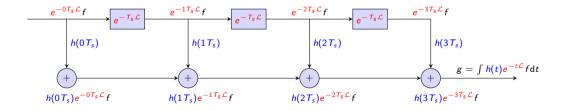
Recap:

► Graph convolutions; Spectral representation of graph filters; GNN architecture

Manifold Filters and Manifold Neural Networks

- ightharpoonup d-dimensional manifold $\mathcal M$ with Laplace-Beltrami (LB) operator $\mathcal L$ and manifold signal f
- ► A Manifold filter with coefficients h is defined by the input-output relationship

$$g(x) = \int_0^\infty h(t) e^{-t\mathcal{L}} f(x) dt = h(\mathcal{L}) f(x)$$



- ightharpoonup d-dimensional manifold $\mathcal M$ with Laplace-Beltrami (LB) operator $\mathcal L$ and manifold signal f
- ► A Manifold filter with coefficients *h* is defined by the input-output relationship

$$g(x) = \int_0^\infty h(t) e^{-t\mathcal{L}} f(x) dt = h(\mathcal{L}) f(x)$$

- Manifold convolutions generalize graph convolutions and standard (time) convolutions
 - \Rightarrow Discretizing a manifold filter yields a graph filter with shift operator $e^{-T_s L_n}$

$$\mathbf{g} = \sum_{k=0}^{K-1} h(kT_s) e^{-kT_s \mathbf{L}_n} \mathbf{f} \approx \sum_{k=0}^{K-1} h(kT_s) (\mathbf{I} - T_s \mathbf{L}_n)^k \mathbf{f}$$

- ightharpoonup d-dimensional manifold \mathcal{M} with Laplace-Beltrami (LB) operator \mathcal{L} and manifold signal f
- ► A Manifold filter with coefficients h is defined by the input-output relationship

$$g(x) = \int_0^\infty h(t) e^{-t\mathcal{L}} f(x) dt = h(\mathcal{L}) f(x)$$

- ► Manifold convolutions generalize graph convolutions and standard (time) convolutions
 - \Rightarrow Recover standard convolutions if we make the particular choice $\mathcal{L} = d/dx$

$$g(x) = \int_0^\infty h(t) e^{-td/dx} f(x) dt = \int_0^\infty h(t) f(x-t) dt$$

ightharpoonup is self-adjoint and positive semi-definite, which leads to a discrete spectrum $\{\lambda_i, \phi_i\}_{i \in \mathbb{N}^+}$

Spectral Representation of Manifold Filters

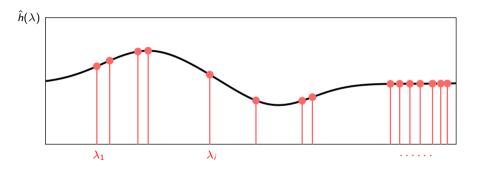
Manifold filter with filter function h(t), manifold signal f(x) and the filtered signal g(x)

$$g(x) = \int_0^\infty h(t)e^{-t\mathcal{L}}dt f(x) = \mathbf{h}(\mathcal{L})f(x)$$

The frequency components $\hat{f}(i) = \langle f, \phi_i \rangle_{L^2(\mathcal{M})}$ and $\hat{g}(i) = \langle g, \phi_i \rangle_{L^2(\mathcal{M})}$ are related by

$$\hat{g}(i) = \int_0^\infty h(t)e^{-t\lambda_i}dt\hat{f}(i) = \hat{h}(\mathbf{\Lambda})\hat{f}(i)$$

► The manifold filter frequency response is point-wise on a scalar variable $-\hat{h}(\lambda) = \int_0^\infty h(t)e^{-t\lambda}dt$



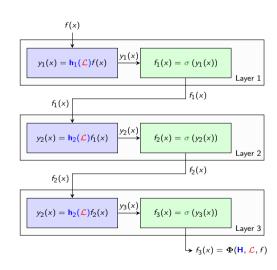
- \triangleright A given manifold instantiates the frequency response on its given specific eigenvalues λ_i
- ▶ Laplace-Beltrami operator possesses infinite spectrum with $\lambda_i \propto i^{2/d}$ according to Weyl's law

Manifold Neural Networks (MNNs)

► Manifold neural network is a cascade of *L* layers

- Each of the layers is composed of manifold convolutions h(L) and pointwise nonlinearities σ
- ▶ Define the learnable parameter set in $h(\mathcal{L})$ as H

lacktriangle MNN can be written as a map $\mathbf{y} = \mathbf{\Phi}(\mathbf{H}, \mathcal{L}, f)$



Recap:

Graph and manifold convolutions; Spectral representation of graph and manifold filters;
 GNN and MNN architectures

Scalability of Graph Neural Networks

Sampled Manifolds as Graphs

- ► Geometric graph filters and GNNs converge to their underlying manifold filters and MNNs
 - ⇒ Convergence enables transferability of geometric GNNs from small to large graphs
- ▶ Sample the manifold at $\{x_i\}_{i=1}^n$. Construct graph \mathbf{G}_n with edge weights $\mathbf{w}_{ij} = K_{\xi}\left(\frac{\|x_i x_j\|^2}{\xi}\right)$

 ϵ -graphs

ightharpoonup Geometric graph filter is defined by replacing Laplace-Beltrami operator with graph Laplacians L_n

$$\mathbf{g} = \int_0^\infty h(t) e^{-t \mathbf{L}_n} dt \mathbf{f} = \mathbf{h}(\mathbf{L}_n) \mathbf{f}, \qquad [\mathbf{f}]_i = f(\mathbf{x}_i)$$

▶ Geometric graph neural networks on $G_n \Rightarrow$ cascading graph filters and non-linearities $\Phi(H, L_n, f)$

Analyze the properties of GNNs and MNNs with the spectral structures of graphs and manifolds

► Geometric graph filter is defined by replacing Laplace-Beltrami operator with graph Laplacians L_n

$$\mathbf{g} = \int_0^\infty h(t) e^{-t \mathbf{L}_n} dt \mathbf{f} = \mathbf{h}(\mathbf{L}_n) \mathbf{f}, \qquad [\mathbf{f}]_i = f(\mathbf{x}_i)$$

▶ Geometric graph neural networks on $G_n \Rightarrow$ cascading graph filters and non-linearities $\Phi(H, L_n, f)$

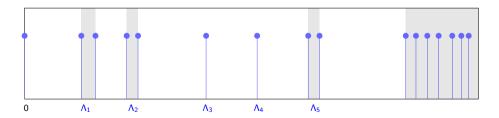
▶ Analyze the properties of GNNs and MNNs with the spectral structures of graphs and manifolds

▶ A filter is A_h -Lipschitz if its frequency response function $\hat{h}(\lambda)$ is A_h -Lipschitz continuous

Definition (α -separated spectrum)

The α -separated spectrum of a LB operator \mathcal{L} is defined as the partition $\Lambda_1(\alpha) \cup \ldots \cup \Lambda_N(\alpha)$ such that all $\lambda_i \in \Lambda_k(\alpha)$ and $\lambda_j \in \Lambda_l(\alpha)$, $k \neq l$, satisfy

$$|\lambda_i - \lambda_j| > \alpha.$$

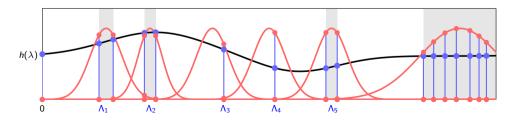


▶ A filter is A_h -Lipschitz if its frequency response function $\hat{h}(\lambda)$ is A_h -Lipschitz continuous

Definition (α -FDT filter)

The frequency response of α -frequency Difference threshold (α -FDT) filter $h(\mathcal{L})$ satisfies

$$|\hat{h}(\lambda_i) - \hat{h}(\lambda_j)| \le \delta_D$$
, for all $\lambda_i, \lambda_j \in \Lambda_k(\alpha)$



Theorem (Convergence of Geometric GNNs)

If an L-layer GNN $\Phi(\mathbf{H}, \mathbf{L}_n, \cdot)$ on \mathbf{G}_n and MNN $\Phi(\mathbf{H}, \mathcal{L}, \cdot)$ on \mathcal{M} have normalized Lipschitz nonlinearities, it holds in high probability that

$$\left\| \Phi(\mathbf{H}, \mathbf{L}_n, \mathbf{P}_n f) - \mathbf{P}_n \Phi(\mathbf{H}, \mathcal{L}, f) \right\|_{L^2(\mathbf{G}_n)} = O\left[\left(\frac{N}{\alpha} + A_h \right) \sqrt{\xi} + \frac{\log(n)}{n} \right] \|f\|_{L^2(\mathcal{M})}$$

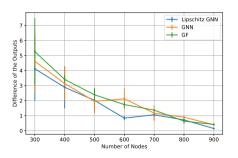
with filters that are α -FDT with $\delta_D \leq O(\sqrt{\xi}/\alpha)$ and A_h -Lipschitz continuous.

- ► The properties of large GNNs can be analyzed via MNN ⇒ Transferability across graph scales
- ▶ The error bound shows trade-off between convergence and discriminability ⇒ nonlinearities lift
- Z. Wang et al, Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-offs, IEEE Trans on Signal Processing

▶ We evaluate the implementations of GNNs with ModelNet10 classification

Z. Wu et al, 3D shapenets: A deep representation for volumetric shapes, IEEE CVPR 2015

 \triangleright Compare the graph output differences between trained small graphs and large graphs (n = 1000)



▶ GNNs can converge to MNNs as more points are sampled; Lipschitz GNNs have smaller differences

• We verify the transferability by testing the trained GNNs on graphs with n = 1000

Baseline GNN		GF	GNN	Lipschitz GNN
16.95 ± 5.42	n = 300	21.97 ± 4.17	10.10 ± 1.40	8.60 ± 2.95
13.11 ± 4.97	n = 500	19.83 ± 5.94	7.74 ± 4.05	7.68 ± 3.75
10.02 ± 3.87	n = 700	16.62 ± 2.38	7.92 ± 3.14	8.02 ± 2.77
6.83 ± 3.96	n = 900	13.85 ± 3.81	7.45 ± 4.03	7.44 ± 3.30

Table: Error rates tested on n = 1000

► Transferability allows the GNNs trained on a small graph directly applied to a large graph

Recap:

- Graph and manifold convolutions; Spectral representation of graph and manifold filters;
 GNN and MNN architectures
- ► Transferability of GNNs across scales based on the convergence of GNNs to MNNs

Stability of GNNs Implied by MNNs

- ► We investigate the stability of MNNs to the manifold deformations
 - \Rightarrow Consider manifold signal f and a deformation $\tau(x) \in \mathcal{M}$ over the manifold (ϵ -small, ϵ -smooth)

$$p(x) = \mathcal{L}' f(x) = \mathcal{L} g(x) = \mathcal{L} f(\tau(x))$$

 \Rightarrow Translate manifold signal perturbations as LB operator perturbations (ϵ -small)

Theorem (Manifold deformations)

Let the deformation $\tau(x): \mathcal{M} \to \mathcal{M}$ satisfies $\operatorname{dist}(x, \tau(x)) \leq \epsilon$ and $J(\tau_*) = I + \Delta$ with $\|\Delta\|_F \leq \epsilon$. If the gradient field is smooth, it holds that

$$\mathcal{L} - \mathcal{L}' = \mathbf{E}\mathcal{L} + \mathcal{A},$$

where **E** and \mathcal{A} satisfy $\|\mathbf{E}\| = O(\epsilon)$ and $\|\mathcal{A}\|_{op} = O(\epsilon)$.

- \blacktriangleright Manifold filters are parameterized by Laplace-Beltrami operator $\mathcal L$ and perturbed operator $\mathcal L'$
- ► In the spatial domain

In the spectral domain

ightharpoonup Compare the difference of MNNs and perturbed MNNs with the spectral analysis of \mathcal{L} and \mathcal{L}'

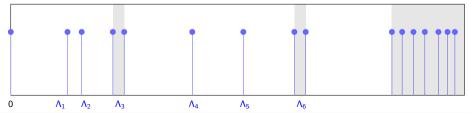
ightharpoonup A filter is B_h -Integral Lipschitz if its frequency response satisfies

$$|\hat{h}(a) - \hat{h}(b)| \le \frac{B_h|a-b|}{(a+b)/2}$$
, for all $a, b \in (0, \infty)$

Definition (γ -separated spectrum)

The γ -separated spectrum of a LB operator \mathcal{L} is defined as the partition $\Lambda_1(\gamma) \cup \ldots \cup \Lambda_N(\gamma)$ such that all $\lambda_i \in \Lambda_k(\gamma)$ and $\lambda_j \in \Lambda_l(\gamma)$, $k \neq l$, satisfy

$$\left|\frac{\lambda_i}{\lambda_i} - 1\right| > \gamma.$$



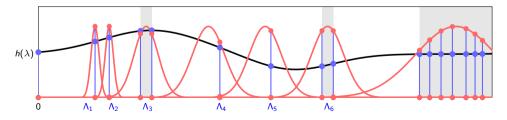
ightharpoonup A filter is B_h -Integral Lipschitz if its frequency response satisfies

$$|\hat{h}(a) - \hat{h}(b)| \le \frac{B_h|a-b|}{(a+b)/2}, \quad \text{for all } a,b \in (0,\infty)$$

Definition (γ -FRT filter)

The frequency response of γ -Frequency Ratio Threshold (γ -FRT) filter $\mathbf{h}(\mathcal{L})$ satisfies

$$|\hat{h}(\lambda_i) - \hat{h}(\lambda_i)| \leq \delta_R$$
, for all $\lambda_i, \lambda_i \in \Lambda_k(\gamma)$



Theorem (Stability of MNNs to deformations)

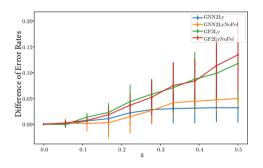
An *L*-layer MNN $\Phi(\mathbf{H}, \mathcal{L}, f)$ have normalized Lipschitz continuous nonlinearities. Let \mathcal{L}' be the deformed LB operator with $\max\{\alpha, 2, |\gamma/1 - \gamma|\} \gg \epsilon$, then

$$\left\| \Phi(\mathbf{H}, \mathcal{L}, f) - \Phi(\mathbf{H}, \mathcal{L}', f) \right\|_{L^{2}(\mathcal{M})} = O\left[\left(\frac{N}{\alpha} + A_{h} + \frac{M}{\gamma} + B_{h} \right) \epsilon \right] \|f\|_{L^{2}(\mathcal{M})}$$

if the manifold filters are α -FDT with $\delta_D \leq O(\epsilon/\alpha)$, γ -FRT with $\delta_R \leq O(\epsilon/\gamma)$, A_h -Lipschitz continuous and B_h -integral Lipschitz continuous.

- ▶ The difference bound shows a trade-off between stability and discriminability ⇒ nonlinearities lift
- Z. Wang et al., Stability to Deformations of Manifold Filters and Manifold Neural Networks, IEEE Trans on Signal Processing

▶ We verify the stability by comparing the performance on normal and deformed point clouds



Architecture	$\epsilon = 0.2$	$\epsilon = 0.4$
GNN2Ly	$7.37\% \pm 1.43\%$	$7.71\% \pm 3.96\%$
GF2Ly	$13.76\% \pm 6.82\%$	$13.54\% \pm 7.16\%$
Architecture	$\epsilon = 0.6$	$\epsilon = 0.8$
GNN2Ly	$8.04\% \pm 2.83\%$	$11.01\% \pm 6.33\%$
GF2Ly	$14.76\% \pm 5.67\%$	$16.04\% \pm 6.34\%$

Techinical Summary

- ▶ We introduce manifold neural networks (MNNs) as the limits of graph neural networks
- And study their fundamental properties:
 - \Rightarrow Scalability: GNNs converge to MNNs \Rightarrow the transferability of GNNs across scales
 - \Rightarrow Stability: MNNs are stable to deformations \Rightarrow the stability of large-scale GNNs

Manifold convolutional filters are linear combinations of Laplace-Beltrami operator exponentials

$$g(x) = \int_0^\infty h(t) e^{-t\mathcal{L}} f(x) dt$$

$$h(0T_s)e^{-0T_s\mathcal{L}}f$$

$$h(1T_s)e^{-1T_s\mathcal{L}_f}$$
 + $h(2T_s)e^{-2T_s\mathcal{L}_f}$ + $h(3T_s)e^{-3T_s\mathcal{L}_f}$

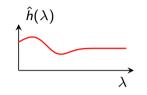
$$h(2T_s)e^{-2T_s\mathcal{L}}f$$

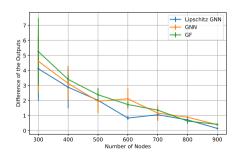
$$h(3T_s)e^{-3T_s\mathcal{L}}f$$

Manifold neural networks (MNNs) compose layers of manifold filters and point-wise non-linearities

► GNNs converge to the underlying MNNs provided the filters satisfy spectral continuity conditions

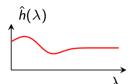
$$\left\| \Phi(\mathbf{H}, \mathbf{L}_n, \mathbf{P}_n f) - \mathbf{P}_n \Phi(\mathbf{H}, \mathcal{L}, f) \right\| = O\left[\left(\frac{N}{\alpha} + \mathbf{A}_h \right) \sqrt{\xi} + \frac{\log(n)}{n} \right] \|f\|_{L^2(\mathcal{M})}$$

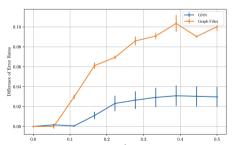




► Stability of MNNs to manifold deformations implies stability of GNNs with continuous filters

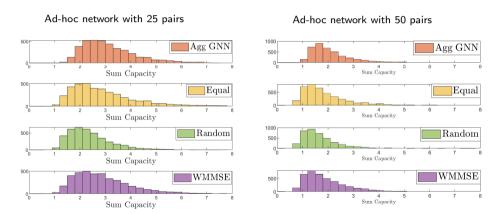
$$\left\| \Phi(\mathbf{H}, \mathcal{L}, f) - \Phi(\mathbf{H}, \mathcal{L}', f) \right\| = O\left[\left(\frac{N}{\alpha} + A_h + \frac{M}{\gamma} + B_h \right) \epsilon \right] \|f\|_{L^2(\mathcal{M})}$$



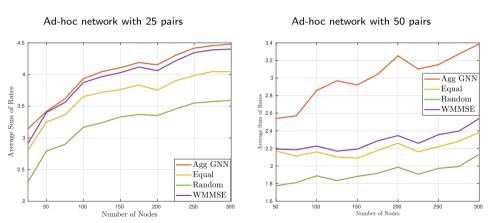


Wireless Resource Allocation

- ▶ We test the trained GNN in other ad-hoc networks of fixed size and density
 - ⇒ The GNN remains optimal across permutations of ad-hoc networks



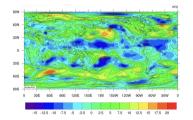
- ▶ We test in other networks of increasing size and fixed density
 - ⇒ The GNN transfers to larger ad-hoc networks with no need of retraining

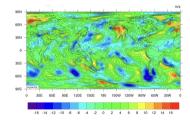


Z. Wang et al., Learning decentralized wireless resource allocations with graph neural networks, IEEE Trans on Signal Processing

Wind Field Reconstruction with Tangent Bundle NNs

		$E\{\widetilde{n}\}=0.5n$	$E\{\widetilde{n}\}=0.3n$	$E\{\widetilde{n}\}=0.1n$
$E\{n\} = 200$	DD-TNN	$1.99 \cdot \mathbf{10^{-2}} \pm 2.30 \cdot 10^{-3}$	$1.18 \cdot \mathbf{10^{-2}} \pm 1.62 \cdot 10^{-3}$	$3.67 \cdot 10^{-3} \pm 1.23 \cdot 10^{-3}$
	MNN	$3.19\cdot 10^{-2}\pm 1.31\cdot 10^{-2}$	$2.74 \cdot 10^{-2} \pm 1.55 \cdot 10^{-2}$	$2.58 \cdot 10^{-2} \pm 1.82 \cdot 10^{-2}$
	MLP	$2.03\cdot 10^{-2} \pm 2.28\cdot 10^{-3}$	$1.20\cdot 10^{-2}\pm 1.68\cdot 10^{-3}$	$3.69 \cdot 10^{-3} \pm 1.17 \cdot 10^{-3}$
$E\{n\} = 300$	DD-TNN	$1.88 \cdot \mathbf{10^{-2}} \pm 1.72 \cdot 10^{-3}$	$1.13 \cdot \mathbf{10^{-2}} \pm 1.54 \cdot 10^{-3}$	$3.96 \cdot 10^{-3} \pm 1.00 \cdot 10^{-3}$
	MNN	$2.68 \cdot 10^{-2} \pm 7.64 \cdot 10^{-3}$	$2.41\cdot 10^{-2}\pm 1.05\cdot 10^{-2}$	$2.09 \cdot 10^{-2} \pm 1.76 \cdot 10^{-2}$
	MLP	$1.95 \cdot 10^{-2} \pm 1.74 \cdot 10^{-3}$	$1.18 \cdot 10^{-2} \pm 1.56 \cdot 10^{-3}$	$4.00 \cdot 10^{-3} \pm 8.85 \cdot 10^{-4}$
$E\{n\} = 400$	DD-TNN	$1.95 \cdot \mathbf{10^{-2}} \pm 1.66 \cdot 10^{-3}$	$1.14 \cdot \mathbf{10^{-2}} \pm 1.38 \cdot 10^{-3}$	$3.70 \cdot 10^{-3} \pm 8.55 \cdot 10^{-4}$
	MNN	$2.48\cdot 10^{-2} \pm 6.55\cdot 10^{-3}$	$2.52 \cdot 10^{-2} \pm 1.20 \cdot 10^{-2}$	$8.16 \cdot 10^{-2} \pm 1.87 \cdot 10^{-1}$
	MLP	$2.01\cdot 10^{-2}\pm 1.66\cdot 10^{-3}$	$1.19\cdot 10^{-2}\pm 1.24\cdot 10^{-3}$	$3.81 \cdot 10^{-3} \pm 8.46 \cdot 10^{-4}$





C. Battiloro, **Z. Wang**. et al., *Tangent bundle convolutional learning: from manifolds to cellular sheaves and back*, IEEE Trans on Signal Processing

Summary: Manifold Filters and Neural Networks as the Limit

▶ We introduce manifold neural networks (MNNs) as the limits of graph neural networks

- ► And study their fundamental properties:
 - \Rightarrow Scalability: GNNs converge to MNNs \Rightarrow the transferability of GNNs across scales
 - \Rightarrow Stability: MNNs are stable to deformations \Rightarrow the stability of large-scale GNNs

- Informs the practical design of graph neural networks for large-scale geometric graphs
 - \Rightarrow Point-cloud analysis, Wireless communications, Wind field reconstructions etc.