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ABSTRACT

The growing complexity of wireless systems has accelerated the
move from traditional methods to learning-based solutions. Graph
Neural Networks (GNNs) are especially well-suited here, since wire-
less networks can be naturally represented as graphs. A key property
of GNNs is transferability: models trained on one graph often gener-
alize to much larger graphs with little performance loss. While em-
pirical studies have shown that GNN-based wireless policies transfer
effectively, existing theoretical guarantees do not capture this phe-
nomenon. Most works focus on dense graphs where node degrees
scale with network size—an assumption that fails in wireless sys-
tems. In this work, we provide a formal theoretical foundation for
transferability on Random Geometric Graphs (RGGs), a sparse and
widely used model of wireless networks. We further validate our
results through numerical experiments on power allocation, a funda-
mental resource management task.

Index Terms— transferability, graph neural networks, random
geometric graphs

1. INTRODUCTION

The use of machine learning to construct efficient wireless resource
allocations has become popular. Graph Neural Networks (GNNs)
have emerged as a particularly effective architecture. Communica-
tion networks can often be modeled as graphs, with devices repre-
sented as nodes and their interactions as edges. This natural cor-
respondence makes GNNs a strong candidate for tackling complex
tasks in wireless systems [1–4].

GNNs consist of stacked layers, each combining a graph convo-
lutional filter with a point-wise nonlinearity [5–8]. Their adoption in
wireless communication is motivated by properties such as permu-
tation equivariance and stability [9–11]. Permutation equivariance
enables learning independently of node labeling, improving data ef-
ficiency. Stability ensures that perturbations in the input lead to con-
trolled perturbations in the output. These properties support learning
policies that generalize across diverse and dynamic wireless network
configurations.

A phenomenon of particular importance in wireless communi-
cation is transferability: policies trained on networks of one size of-
ten generalize to much larger networks with minimal performance
loss. This effect has been observed empirically [1, 2, 12, 13] and is
in fact not unique to communications, but a widely studied property
of GNNs [14–18]. Existing theoretical works consider graphs in the
limit, commonly via graphons [14] or manifolds [17], where node
degrees grow with network size, yielding dense or relatively sparse
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graphs. Remarkably, these analyses do not extend to wireless sys-
tems, where node degrees remain bounded by physical constraints.
In addition, most approaches rely on abstract random models and ne-
glect the geometric structure intrinsic to communication networks.
Addressing the gap forms the core contribution of our work.

We develop a theoretical framework for analyzing the transfer-
ability of GNN-based resource-allocation policies in wireless net-
works. The key idea is to relate Random Geometric Graphs (RGGs),
which naturally model wireless topologies via random node place-
ments with radius-based connectivity [19,20], to Deterministic Grid
Graphs (DGGs), whose regular structure admits a clear connection to
the transferability exploited by convolutional neural networks [21].
Using DGGs as a surrogate “bridge,” we quantify the difference be-
tween an RGG and a DGG with same size and density through a
simple measure of matrix difference. This pair lets us derive transfer
guarantees across scales, that is, if the RGG–DGG difference is suf-
ficiently small, then a policy learned at one scale transfers to other
scales of RGGs with a provably bounded loss (Theorem 3). In par-
ticular, the transfer loss grows at most linearly with the RGG–DGG
discrepancy. We validate the theory on the classical power-allocation
task, training a GNN policy at one network scale and evaluating it
across varying sizes. This contributes to both the theory of GNNs
over sparse graphs and the practical applications of GNNs.

2. RESOURCE ALLOCATION WITH GRAPH NEURAL
NETWORKS

We consider the problem of resource allocation in a wireless net-
work with n users. At each time slot t, user i is associated with a
state [x(t)]i (e.g., queue length or priority), summarized in the vec-
tor x(t) ∈ Rn. The channel gain from user i to user j is denoted
sij(t), with all channel gains collected in S(t) ∈ Rn×n. The re-
source allocation policy is represented by p ∈ Rn. At each time
step, the controller observes the network states (x(t),S(t)), selects
the allocation strategy p(t), and receives a reward determined by the
system. We define the expected reward f(p(t);x(t),S(t)) as the
system reward and focus on the long-term average performance:

r = E[f(p;x,S)], (1)

where the expectation is taken over the stationary joint distribution of
(x,S). This captures user experience under fast time-varying chan-
nels and states. The goal is to design a policy p(x,S) that maxi-
mizes expected reward (1). We introduce a utility function u0(r) to



formulate the optimization problem:

p⋆(S,x) = argmax
p(x,S)∈P(x,S)

u0(r), (2)

s.t. r =E[f(p(x,S);x,S)],
u(r) ≥ 0,

where u(·) captures long-term system constraints (e.g., power bud-
gets). This formulation is challenging as the objective is often non-
convex in p. To address this, we introduce a parameterized policy
Φ(x,S;H), with parameters H ∈ Rs. The problem becomes

H⋆ =argmax
H∈Rs

u0(r), (3)

s.t. r =E[Φ(x,S;H);x,S)],

u(r) ≥ 0,

The focus thus shifts from computing allocations directly to learning
the parameters H of a policy class Φ. In this work, Φ will be instan-
tiated as a Graph Neural Network, which we describe next. For more
details on the problem formulation see [1].

2.1. Graph Neural Networks

A graph convolutional filter is a polynomial on a matrix representa-
tion of the graph. Considering a graph signal x ∈ Rn (i.e. a vector
supported on the nodes of a graph), we define a graph filter of order
K as follows [5, 22–24]:

y =

K−1∑
k=0

hkS
kx, (4)

where {hk}K−1
k=0 are the filter coefficients and S ∈ Rn×n is the ma-

trix representation of the graph, commonly referred to as the graph
shift operator (GSO) [25]. As the GSO is symmetric, it is possi-
ble to diagonalize it as S = VΛVH , with V a matrix with the
eigenvectors and Λ a diagonal matrix with the eigenvalues, namely
λ = [λ1, λ2, · · · , λK ]. Through a change of basis it is possible
to obtain the spectral representation of the graph convolution, also
denoted the graph frequency response of the filter:

ĥ(λ) =

K−1∑
k=0

hkλ
k. (5)

Graph Neural Networks (GNNs) are composed of multiple lay-
ers, each combining a graph convolutional filter with a point-wise
nonlinearity σ, with σ : R → R. At the l-th layer, the filter takes
as input graph signal xl−1 ∈ Rd

l−1, the output of the previous layer.
This signal is then passed through σ:

xl = σ

(
K−1∑
k=0

hlkS
kxl

)
. (6)

This process is repeated across L layers. The full set of trainable
parameters is denoted H ∈ H, comprising all hlk for l ∈ 1, . . . , L
and k ∈ 0, . . . ,K − 1. Importantly, the dimensionality of H does
not depend on the size of the graph.
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Fig. 1: Visualization of random geometric graphs as perturbations of
deterministic grid graphs. Top: Illustrations of a small RGG (left)
and large RGG (right). Bottom: Illustrations of a small DGG (left)
and a large DGG (right).

2.2. Random Geometric Graphs

A deterministic grid graph (DGG) Gn = (Dn, E) is a graph defined
on a regular lattice in a Euclidean space. Each of the n nodes cor-
responds to a lattice point, and edges connect nodes that are direct
neighbors on the grid. A Random Geometric Graph (RGG) [19] is
an undirected graph Gr

n = (Vn, Er) constructed by placing n nodes
uniformly at random in a metric space of size Le × Le:

Vn ∼ U2(0, Le). (7)

This uniform placement captures the random aspect. An edge
(i, j) ∈ Er is included whenever the Euclidean distance between
nodes i and j is at most a fixed connection radius rc:

Er = {(i, j) : d(i, j) ≤ rc}, (8)

which explains the geometric aspect. Suppose the density of the
agents over the space is fixed as ρ, the expected number of neigh-
bors of each agent is πr2c/ρ, which is also the average vertex degree.
RGGs naturally arise in wireless communication settings, where
nodes represent users or devices and connectivity within a fixed ra-
dius approximates feasible links determined by signal strength and
interference.

Let SDn ,Sn ∈ Rn×n denote the adjacency matrices of Gn,
Gr

n respectively. If the norm difference between these matrices is
sufficiently small, a RGG can be viewed as a perturbation of a DGG,
obtained by adding Gaussian noise η ∼ N (0, σ2) to the node posi-
tions. This comparison, illustrated in Figure 1 for a radius rc, forms
the basis of our theoretical framework.

We first show that GNNs can transfer across scales on grid
graphs from Gn to Gm (Theorem 1). Next, we prove that a GNN
trained on an RGG Gr

n close enough to a DGG G transfers with
little performance loss (Theorem 2). Reversing the perturbation then
yields transferability from Gm to a larger RGG Gr

m (Theorem 3).

3. TRANSFERABILITY OF GRAPH NEURAL NETWORKS
IN WIRELESS COMMUNICATION NETWORKS

We begin by establishing transferability across scales for determinis-
tic grid graphs. Consider two DGGs, Gn and Gm, with normalized
adjacency matrices SDn and SDm , where n < m. The adjacency
matrix of a regular grid graph is circulant, with identical non-zero



entries. This structure makes it possible to reinterpret the graph con-
volutional operation on a grid graph as a standard 2-D convolution,
provided the nodes are indexed by their 2-D coordinates. Suppose
that n = B×B with B ∈ N+ 1, we reform the state matrix x ∈ Rn

as a 2-d discrete function as

xB(n1, n2) = [x]n1+n2×B ∈ R, (9)

with n1, n2 = 0, 1, · · · , B − 1 representing the 2-d coordinates of
each grid node. The graph convolution operation as a process of ag-
gregating information from neighbors, is actually the same operation
with the entries of the mask matrix equal to the non-zero entries of
the adjacency matrix SDn . The size of this mask matrix is related
to the degree of each node, i.e. decided by rc. We denote this mask
matrix as L ∈ RM×M , with M = ⌈

√
πr2c/ρ+ 1⌉, which can be

defined based on SDn . When we see the graph filter operating on
the grid graphs, we can see it as a 2-D convolution operation. With
the one-step aggregation rewritten as

xB,1(n1, n2) = L⊗ xB(n1, n2) (10)

=

M−1∑
k1=0

M−1∑
k2=0

L(k1, k2)xB(n1 − k1, n2 − k2), (11)

which also collects signals over the neighboring nodes. Analo-
gously, the k-step aggregation

xB,k(n1, n2) = L⊗ xB,k−1(n1, n2) = (L⊗)kxB(n1, n2). (12)

The graph convolution operation can be recovered by scaling
xB,k with hk and summing up all the aggregated information, which
is written as

yL,B =

K∑
k=0

hk(L⊗)kxB := hD(L, xB). (13)

Followed by a point-wise nonlinearity, this could recover the pa-
rameterization of Φ(x,SDn ;H) with L layers. We assume that the
input signal x and the output performance r in (1) is jointly station-
ary over the 2-D space. We use the evaluation metric as the perfor-
mance difference between the performance achieved by the learned
policy rn and the optimal policy r∗n, defined as

Ln =
1

n
∥rn(Φ(x,SDn ;H))− r∗n∥2. (14)

Theorem 1. Let 2-D convolutional neural network (i.e. GNN over a
grid graph) be the parameterized policy that achieves a performance
loss Ln when applied on a grid graph with size n and achieves a loss
of Lm when applied on another grid graph with size m. Suppose
n < m, the difference of these two losses can be bounded as

Lm ≤ Ln + CME[∥x∥2] +
√

LnCME[∥x∥2], (15)

with the input and output signals are jointly stationary and bounded.

CM =
H2

K
n

[2
√
nKM+K2M2] with HK =

∑K
l=0

∑K
k=0 |hlk|∥L∥k1 .

When the neural network is trained on the grid graph with size n,
i.e. Ln ≤ ϵ, the loss achieved by implementing the trained neural
network on the grid graph with size m.

Proof. See Appendix 1 in [26].

1Here n could be decomposed in a general form n = P × B with zero-
padding, we use this squared form for the ease of presentation.

Under this interpretation, the transferability of CNNs extends
naturally to grid graphs with fixed density as the number of nodes
increases. This observation provides the bridge to GNNs on RGGs
if we establish the connection between GNNs on grid graphs and on
RGGs with the same scale and density.

To study transferability for a GNN trained on an RGG Gr
n with

normalized adjacency matrix Sn to the grid graph Gn, we introduce
the following definition and assumption.

Definition 3.1. (Integral Lipschitz continuous filter) A filter ĥ is in-
tegral Lipschitz continuous with constant C if its frequency response
satisfies

|ĥ(a)− ĥ(b)| ≤ C|a− b|
(a+ b)/2

for all a, b ∈ (0,∞). (16)

Assumption 3.1. (Normalized Lipschitz nonlinearity) The nonlin-
earity σ is normalized Lipschitz continuous, i.e., |σ(a) − σ(b)| ≤
|a− b|, with σ(0) = 0.

We note that this assumption is reasonable, since most common
nonlinearity functions are normalized Lipschitz. We assume that the
graph filters used in the GNN are integral Lipschitz continuous as de-
fined in Definition 3.1. Furthermore, we assume that the difference
between the RGG and DGG matrices Sn − SDn is small.

We define the performance metric on RGGs similar to (14) as

Lr
n =

1

n
∥r(Φ(xn,Sn;H))− rr∗n ∥2, (17)

which is the comparison between the performance on the learned
policy Φ(xn,Sn;H) and the optimal performance. We can now
conclude the transferability of GNNs from RGG to DGG in the form
of Theorem 2.

Theorem 2. Let Φ(x,S;H) be an 1-layer GNN applied on a ran-
dom geometric graph Gr

n and a grid graph Gn. We define Wn =
Sn − SDn such that E[∥W2

n∥] = O(n−α) with α > 0. Suppose
that the GNN is trained on Gr

n with Lr
n ≤ ϵ, The difference of the

outputs of GNN with input graph signal x ∈ Rn can be bounded as

|Ln − Lr
n| ≤ C2n1−α∥x∥2 + 2

√
ϵCn

1−α
2 ∥x∥. (18)

Proof. See Appendix 2 in [26].

This proves that the difference of the performances of a GNN on a
DGG Gn and on a RGG Gr

n can be bounded.
We have shown that GNNs on RGGs can transfer to DGGs with

the same number of nodes when the adjacency matrices are close
enough in Theorem 2. Theorem 1 further proves that GNNs transfer
on DGGs with different number of nodes. The transference of GNNs
on RGGs with different number of nodes can therefore be derived
based on the triangle inequality.

Theorem 3. Let Φ(x,S;H) be a L-layer GNN applied on a graph
with GSO S and input x. Suppose there are two random geomet-
ric graphs Gr

n with adjacency matrix Sn and Gr
m with adjacency

matrix Sm, such that n < m. The network Φ has been trained to
minimize Lr

n ≤ ϵ. We take α = 2 and omit the terms that have order
smaller than

√
ϵ,

|Lr
n − Lr

m| =

O

(
√
ϵ
(
n−1/2∥xn∥+m−1/2∥xm∥

)
+ n−1∥xn∥2 +m−1∥xm∥2

)
.

(19)



Proof. See Appendix 3 in [26].

We can see from the theorem that a GNN trained on a small
RGG (a small wireless network) can be transferred to a larger RGG
(a larger wireless network) with the trained policy approximating
the optimal policy well enough. The difference between these two
performances decreases with the size of these two networks and de-
pends on the spectral continuity of the filter functions in the GNN.
This attests that the trained policy over a wireless network modeled
as a random geometric graph, i.e. graph with limited degree, can be
transferred across scales without retraining. This fills the theoretical
gap of analyzing the transferability of GNNs across sparse random
geometric graphs. We verify this conclusion in a real-world power
allocation scenario in the following.

4. NUMERICAL EXPERIMENTS

We present numerical simulations for the power allocation problem
that support our theoretical results. The utility function u0 is defined
as the sum rate, where the rates r are as follows:

ri := log
(
1 +

|hij |2pi(x,H)

η2 +
∑

k ̸=i |hkj |2pk(x,H)

)
. (20)

We consider the capacity that each transmitter experiences over
the noise η2 introduced in the AWGN channel and the interference
caused by other users. We seek to maximize the expectation of the
sum capacity over channel realizations. Assuming a power budget
Pmax, we formulate a simplified version of (2).

p∗(x,H) = argmax
p(x,H)∈{0,p0}n

n∑
i=1

ri (21)

s.t. E[1Tp(x,H)] ≤ Pmax

p(x,H) ∈ {0, p0}n.

The solution to (21) can be obtained by defining a learning parame-
terization and operating in the Lagrangian dual domain to obtain the
optimal policy. The approach is analogous to the one seen in [1]. The
key difference lies in the construction of the channel matrix, which
is aligned with the structure of a weighted adjacency matrix.

We construct RGGs for training datasets as perturbations of
DGGs, as described in Section 2.2. Two-dimensional Gaussian
noise is added to perturb the grid graphs, obtaining RGGs represen-
tative of communication networks. Isolated nodes were removed
from the network, which resulted in uneven average number of
nodes in each dataset. The channel matrix was created considering
a path loss coefficient and a fading channel gain. Different scales
were considered to evaluate transferability. Each dataset consists of
100 graphs with an average link count of nk ≃ 500 + 100k, for
k = {0, 1, . . . , 7}. More details from the implementation, such as
the architecture and hyperparameters, can be seen in the repository
of the project.2

We sample power assignments interpreting the output of the
GNN as probability of assignment and sampling Bernoulli variables
for the binary allocation. We consider a policy variation of the
heuristic baseline WMMSE [27], using its outputs as probabilities
to sample Bernoulli trials. The results for the evaluation of our
algorithm on unseen data can be seen in Table 1. For the power con-
straint, we compute 1Tp(x,H)−Pmax,k for each dataset, dividing

2The code implementation can be found in https://github.com/
romm32/rgg_transferability

Sum rate Power constraint

WMMSE 276.70± 9.62 (−1.26± 1.94)× 10−2

GNN 771.91± 6.63 (−3.69± 1.29)× 10−2

Table 1: Performance against WMMSE. We present mean and stan-
dard deviation across 10 experiments over 100 unseen graphs.

Fig. 2: Empirical distribution of sum rate achieved for 10 experi-
ments. Comparison of a GNN trained for n ≃ 500 and a GNN
trained for n ≃ 600, both evaluated on a test dataset with n ≃ 600.

over nk to get average per-node power budget violation. It can be
seen that our model outperforms the baseline, successfully finding
optimal allocation policies.

Figures 2 and 3 show transferability results for a model trained
with n ≃ 500. For comparison, we trained separate models on each
scale to evaluate in-distribution performance. Results are reported on
graphs unseen during training. The transferred model performs on
par with scale-specific models while maintaining low constraint vio-
lations. Overall, we observe a favorable trade-off between achieving
high rates and avoiding both over- and under-allocation.

Fig. 3: Sum rate and power constraint values for networks of differ-
ent scales with models trained in-distribution (nT = nE) and with a
transferred model trained for n = 484.

5. CONCLUDING REMARKS

We presented a theoretical analysis of the transferability of wireless
resource allocation policies using graph neural networks on random
geometric graphs, and supported the findings with numerical experi-
ments. Future work includes developing a more rigorous theoretical
framework. It would also be valuable to investigate how transfer-
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ability degrades when the underlying assumptions are not satisfied.

A. APPENDIX

A.1. Proof of Theorem 1

A.1.1. Transferability of Filters between Grid Graphs

Suppose there is a discrete random stationary signal over the 2-d
space f : N → R, the input signal is a narrow window of this signal
as xB = ⊓Bf , where ⊓B(n1, n2) = 1(0 ≤ n1 ≤ B, 0 ≤ n2 ≤
B). Next, we propose the transference of CNNs over different scales
of grid graphs.

Proposition A.1. Let hD(·) be a 2-d convolutional filter as defined
in (13). The output difference of the filter on a grid graph with size
n = B1 × B1 and another grid graph with m = B2 × B2 can be
bounded as

E[∥ ⊓B1 (hD(L, xB1)− hD(L, xB2))∥
2
2]

≤ C2
K(B2

2 −B2
1)E[f(0, 0)2], (22)

with CK =
K∑

k=1

∥L∥k1 |hk|.

Proof. According to the definition of 2-d convolutional filter in (13),
the difference can be written as

∥ ⊓B1 (hD(L, xB1)− hD(L, xB2))∥
= ∥ ⊓B1 (hD(L,⊓B1f)− hD(L,⊓B2f))∥ (23)

=

∥∥∥∥∥ ⊓B1

(
K∑

k=0

hk(L⊗)k(⊓B1f)

)
− (24)

⊓B1

(
K∑

k=0

hk(L⊗)k(⊓B2f)

)∥∥∥∥∥ (25)

With triangle inequality, we have

∥ ⊓B1 (hD(L, xB1)− hD(L, xB2))∥

≤
K∑

k=0

∥ ⊓B1 hk(L⊗)k(⊓B1f)− ⊓B1hk(L⊗)k(⊓B2f)∥ (26)

≤
K∑

k=0

∥hk(L⊗)k(⊓B1f)− hk(L⊗)k(⊓B2f)∥. (27)

With Young’s convolution inequality

∥hkL⊗ (⊓B1f)∥ ≤ ∥L∥1∥hk(⊓B1f)∥, (28)

we have

∥ ⊓B1 (hD(L, xB1)− hD(L, xB2))∥

≤
K∑

k=0

∥L∥k1 |hk|∥(⊓B1f)− (⊓B2f)∥ (29)

= CK∥(⊓B1f)− (⊓B2f)∥, (30)

if B1 +MK ≥ B2. With expectation, we have

E[∥ ⊓B1 (hD(L, xB1)− hD(L, xB2))∥
2]

≤ C2
KE[∥(⊓B1f)− (⊓B2f)∥

2] (31)

≤ C2
K(B2

2 −B2
1)E[f(0, 0)2]. (32)

A.1.2. Transferability of GNNs between Grid Graphs

We assume that the input signal f and output g are jointly station-
ary over the 2d space. The evaluation metric is a loss function of
a supervised learning similar to the definitions in [21]. To sim-
plify the notation, we assume that n = B2

1 and m = B2
2 . To

simplify the notation, we denote Ln = LB1 and rewrite the out-
put Φ(x,SDn ;H) as a 2-D signal yL,B1 similar to (9), specifi-
cally yL,B1 =

∑K
k=0 hk(L⊗)k(⊓B1f) with a windowed input of

f which only inputs the values f(i, j) if i, j = 0, 1, · · · , B1 − 1.

LB1(L) =
1

B2
1

E

[
B1−1∑
i,j=0

|yL,B1(i, j)− g(i, j)|2
]
. (33)

We can conclude that the neural networks trained on a small-
size grid graph can transfer to a larger grid graph with a bounded
loss function.

Proof. We denote the difference between the predicted outputs as
ϵ(i, j) = yL(i, j) − g(i, j) with yL as the output of the 2d-CNN
when inputting f . For any time length T , let N = ⌈B2/B1⌉, then
we have

LB2(L) ≤ E

[
1

(NB1)2

NB1−1∑
n1=0

NB1−1∑
n2=0

|ϵ(i, j)|2
]
. (34)

Recenter the summations and denote T = {mB1 − (N−1)B1
2

|m ∈
Z, 1 ≤ m < N}2 as the center points, the summation can be de-
composed as

LB2(L) ≤ E

[
1

(NB1)2

∑
τ∈T

[
B1−1∑
i,j=0

|ϵ(i− τ1, j − τ2)|2
]]

(35)

≤ 1

(NB1)2

∑
τ∈T

E

[
B1−1∑
i,j=0

|ϵ(i− τ1, j − τ2)|2
]
. (36)

With the inputs and outputs both stationary, we have E[|ϵ(i−τ1, j−
τ2)|2] = E[|ϵ(i, j)|2], which leads to

LB2(L) ≤
1

(NB1)2

∑
τ∈T

E

[
B1−1∑
i,j=0

|ϵ(i, j)|2
]

(37)

≤ 1

B2
1

E

[
B1−1∑
i,j=0

|ϵ(i, j)|2
]
. (38)

Next we replace ϵ with the indicator function and have an interme-
diate term yL,B1 as the output of 2D-CNN when inputting ⊓B1f .

LB2(L) ≤
1

B2
1

E[∥ ⊓B1 yL − g∥2] (39)

=
1

B2
1

E[∥ ⊓B1 yL − ⊓B1yL,B1 + ⊓B1yL,B1 − g∥2] (40)

≤ 1

B2
1

E[∥ ⊓B1 yL,B1 − g∥2] + 1

B2
1

E[∥ ⊓B1 (yL,B1 − yL)∥2]

+
2

B1
2E[∥ ⊓B1 (yL,B1 − g)∥∥ ⊓B1 (yL,B1 − yL)∥] (41)



The first term in (41) is LB1(L). The second term can be bounded
as follows.

∥ ⊓B1 (yL − yL,B1)∥

=

∥∥∥∥∥⊓B1

(
K−1∑
k=0

hk(L⊗)kf −
K−1∑
k=0

hk(L⊗)kfB1

)∥∥∥∥∥ (42)

≤ ∥⊓B1(f − fB1)∥+ ∥⊓B1h1(L⊗ f − L⊗ fB1)∥+ · · ·

+
∥∥∥⊓B1hK−1((L⊗)K−1f − (L⊗)K−1fB1)

∥∥∥ (43)

≤ ∥⊓B1(f − ⊓Af)∥+ |h1|∥L∥1∥ ⊓B1+M (f − ⊓B1f)∥2
+ |h2|∥L∥21∥ ⊓B1+2M (f − ⊓B1f)∥2 · · · (44)

≤
K−1∑
k=0

|hk|∥L∥k1∥ ⊓B1+kM (f − ⊓B1f)∥2 (45)

≤
K−1∑
k=0

|hk|∥L∥k1∥ ⊓B1+(K−1)M (f − ⊓B1f)∥2 (46)

= HK∥ ⊓B1+(K−1)M (f − ⊓B1f)∥2, (47)

with HK =
∑K−1

k=0 |hk|∥L∥k1 . Therefore, we have

LB2(L) ≤ LB1(L) +
H2

K

B2
1

E
[
∥ ⊓B1+(K−1)M (f − ⊓B1f)∥

2]
+

√
LB1(L)

H2
K

B1
2E
[
∥ ⊓B1+(K−1)M (f − ⊓B1f)∥2

]
(48)

Since f is stationary, the second term can be seen as the variance of
f with a volume (B1 + (K − 1)M)2 −B1

2. Finally, we can derive

LB2(L) ≤ LB1(L) + CME[f2] +
√

LB1(L)CME[f2], (49)

where CM =
H2

K

B2
1
[2B1KM+K2M2] with HK =

∑K
k=0 |hk|∥L∥k1 .

As we have normalized nonlinearities and multiple layers can be
seen as a recurrent operation, the conclusion in Theorem 1 can be
recovered.

A.2. Proof of Theorem 2

A.2.1. Transferability of Graph Filters across RGGs

Proposition A.2. Let h(·) be a graph convolutional filter with inte-
gral Lipschitz continuous frequency responses with |λh′(λ)| ≤ C.
Let Sn and SDn denote the adjancecy matrices of a random geo-
metric graph and a deterministic geometric graph over a unit space
respectively with Wn = Sn − SDn . If it satisfies that E[

∥∥W2
n

∥∥] =
O(1/nα) with α > 0. We have the difference of the outputs of graph
convolutional filters with a input graph signal x ∈ Rn bounded as

E
[
∥h(Sn,x)− h(SDn ,x)∥

2] ≤ C2n1−α∥x∥2. (50)

Proof. We denote An = Sn and Cn = SDn with An = Cn +Wn.
With yA =

∑K
k=0 hkAk

nx and yC =
∑K

k=0 hkCk
nx, we have

E[∥yA − yC∥2]

= E[tr(yAy
T
A − yCy

T
C)] + 2E[tr(yCy

T
C − yAy

T
C)] (51)

=

K∑
k=0

K∑
l=0

hkhl

(
E[tr(Ak

nxx
TAl

n)]− tr(Ck
nxx

TCl
n)
)

+ 2

K∑
k=0

K∑
l=0

hkhl(tr(Ck
nxx

TCl
n)− E[tr(Ak

nxx
TCl

n)]). (52)

We start with the first term in (52) which can be written as

K∑
k,l=0

hkhl

(
E[tr(Ak

nxx
TAl

n)]− tr(Ck
nxx

TCl
n)
)

=

K∑
k,l=0

hkhl(E[tr(Cn +Wn)
kxxT(Cn +Wn)

l]− tr(Ck
nxx

TCl
n)) (53)

=

K∑
k,l=0

hkhl

(
E

[
tr(Ck

nxx
TCl

n + ((Cn +Wn)
kxxTCl

n − Ck
nxx

TCl
n) + (Ck

nxx
T(Cn +Wn)

l − Ck
nxx

TCl
n))

+ tr

((
k∑

r=1

Ck−r
n WnCr−1

n

)
xxT

(
l∑

s=1

Cs−1
n WnCl−s

n

))]
− tr(Ck

nxx
TCl

n)]

)
(54)

=

K∑
k,l=0

hkhl

(
E[tr((Cn +Wn)

kxxTCl
n + Ck

nxx
T(Cn +Wn)

l)]− 2tr(Ck
nxx

TCl
n)+

E

[
tr

((
k∑

r=1

Ck−r
n WnCr−1

n

)
xxT

(
l∑

s=1

Cs−1
n WnCl−s

n

))])
+

K∑
k,l=0

hkhlE[tr(Rkl)], (55)

where Rkl represents the sum of the remaining terms that include
terms with higher order than W2

n.
The second term in (52) can be written as

2

K∑
k,l=0

hkhltr(Ck
nxx

TCl
n)− E[tr(Ak

nxx
TCl

n)]

=

K∑
k,l=0

hkhl

(
2tr(Ck

nxx
TCl

n)− 2E[tr((Cn +Wn)
kxxTCl

n)]

)
.

(56)



We notice that putting (55) and (56) together leads to the expression
of E[∥yA − yC∥2] as

E[∥yA − yC∥2] =
K∑

k,l=0

hkhl

E

[
tr

((
k∑

r=1

Ck−r
n WnCr−1

n

)
xxT

(
k∑

s=1

Cs−1
n WnCl−s

n

))]
.

(57)

By moving all the summations outside, we have

E[∥yA − yC∥2] =
K∑

k,l=0

k∑
r=1

l∑
s=1

hkhl

E
[
tr
((

Ck−r
n WnCr−1

n

)
xxT

(
Cs−1
n WnCl−s

n

))]
. (58)

With the trace cyclic property tr(ABC) = tr(CAB) = tr(BCA),
we have

E[∥yA − yC∥2] =
K∑

k,l=0

k∑
r=1

l∑
s=1

hkhl

E
[
tr
(
WnCl+k−r−s

n WnCr−1
n xxTCs−1

n

)]
. (59)

For positive semidefinite matrices, the trace is submultiplicative as
tr(AB) ≤ tr(A)tr(B). Therefore, we have

E[∥yA − yC∥2]

=

K∑
k,l=0

k∑
r=1

l∑
s=1

hkhlE
[
tr
(
WnCl+k−r−s

n Wn

)
tr
(
Cr−1
n xxTCs−1

n

)]
(60)

≤
K∑

k,l=0

k∑
r=1

l∑
s=1

hkhlE
[
tr
(
WnCl+k−r−s

n Wn

)]
tr
(
Cr−1
n xxTCs−1

n

)
.

(61)

In (61), the deterministic term tr(Cr−1
n xxTCs−1

n ) can be decom-
posed with the spectral representation of x. With x decomposed
with respect to the eigenbasis {ei}ni=1 of Cn, x =

∑n
i=1 x̂iein,

with x̂i = ⟨x, ei⟩, we have

tr(Cr−1
n xxTCs−1

n )

= tr

Cr−1
n

(
n∑

i=1

x̂iei

)(
n∑

i=1

x̂iei

)T

Cs−1
n

 (62)

= tr

( n∑
i=1

x̂iCr−1
n ei

)(
n∑

i=1

x̂iCs−1
n ei

)T
 (63)

= tr

( n∑
i=1

x̂iλ
r−1
i ei

)(
n∑

i=1

x̂iλ
s−1
i ei

)T
 , (64)

as the eigenbasis are orthonormal, i.e. tr(eie
T
i ) = 1 and eie

T
j = 0

for i ̸= j, we have

tr(Cr−1
n xxTCs−1

n ) = tr

(
n∑

i=1

x̂2
iλ

r+s−2
i eie

T
i

)
(65)

=

n∑
i=1

x̂2
iλ

r+s−2
i . (66)

Insert this back to (61), we have

E[∥yA − yC∥2] (67)

≤
n∑

i=1

x̂2
i

K∑
k,l=0

k∑
r=1

l∑
s=1

hkhlE
[
tr
(
WnCl+k−r−s

n Wn

)]
λr+s−2
i .

(68)

With the trace cyclic property and the inequality that

tr(AB) ≤ ∥A∥2tr(B), (69)

for any square matrix A and positive semidefinite matrix B [28].
Therefore, the inequality can be derived further as

E[∥yA − yC∥2] (70)

≤
n∑

i=1

x̂2
i

K∑
k,l=0

k∑
r=1

l∑
s=1

hkhlE
[
∥W2

n∥2
]
tr
(
Cl+k−r−s
n

)
λr+s−2
i

(71)

≤
n∑

i=1

x̂2
i

K∑
k,l=0

k∑
r=1

l∑
s=1

hkhlE
[
∥W2

n∥2
] n∑
j=1

λl+k−r−s
j λr+s−2

i .

(72)

By changing the summation order, we have

E[∥yA − yC∥2]

≤
n∑

i,j=0

K∑
r,s=1

(
K∑

k=r

hkλ
r−1
i λk−r

j

)(
K∑
l=s

hlλ
s−1
i λl−s

j

)
x̂2
iE
[
∥W2

n∥
]

(73)

≤
n∑

i,j=0

K∑
r=1

(
K∑

k=r

hkλ
r−1
i λk−r

j

)2

x̂2
iE
[
∥W2

n∥
]
. (74)

We import the definition of generalized Lipschitz gradient (Defini-
tion 4 in [29]) of generalized graph filter frequency response (Defini-
tion 3 in [29]). More specifically, let λ(r) = [λi, λi · · · , λj , · · · , λj ]

T

with r λi followed by K − r λj and λ(r) ∈ RK
+ . The partial deriva-

tive of generalized h(λ) with respect to the r-th entry λr as

∂h(λ(r))

∂λr
=

K∑
k=r

hkλ
r−1
i λk−r

j , for all r = 1, 2 · · · ,K. (75)

The generalized Lipshitz gradient between λi and λj is defined as

∇Lh(λi, λj) =

[
∂h(λ(1))

∂λ1
, · · · ∂h(λ

(K))

∂λK

]T
. (76)

Therefore, the inequality (74) can be further derived combined with
the Lipschitz gradient assumption ∥∇Lh(λi, λj)∥ ≤ CL ≤ C and
∥E[W2

n]∥ = O(1/nα).

E[∥yA − yC∥2] ≤
n∑

i,j=0

∥∇Lh(λi, λj)∥2 x̂2
iE
[
∥W2

n∥
]

(77)

≤ nC2E
[
∥W2

n∥
]
∥x∥2 ≤ C2n1−α∥x∥2. (78)

This concludes the proof.



A.2.2. Transferability of GNNs across RGGs

Proposition A.3. Let Φ(x,Sn;H) be an 1-layer GNN applied on a
random geometric graph Gr

n and a grid graph Gn. Under the same
setting with Theorem A.2, the difference of the outputs of GNN with
input graph signal x ∈ Rn can be bounded as

E
[
∥Φ(x,Sn;H)−Φ(x,SDn ;H)∥2

]
≤ FLC2n1−α∥x∥2.

(79)

Proof. To bound the output difference of GNNs on RGG and grid
graph, we need to write in the form of features of the final layer

E
[
∥Φ(X;Sn,H)−Φ(X;SDn ,H)∥2

]
=

F∑
q=1

E
[∥∥σ(yq

A,L)− σ(yq
C,L)

∥∥2] (80)

≤
F∑

q=1

E
[∥∥yq

A,L − yq
C,L

∥∥2] , (81)

≤ FE
[∥∥yq

A,L−1 − yq
C,L−1

∥∥2] (82)

where the inequality comes from the normalized Lipschitz of non-
linearities.

A.2.3. Proof of Theorem 2

Proof. We replace yA = Φ(x,Sn,H) and yC = Φ(x,SDn ,H)
and r∗n = g for the ease of presentation. The MSE loss can be
written as∣∣E [∥yA − g∥2 − ∥yC − g∥2

]∣∣
≤ E

[∣∣∥yA − g∥2 − ∥yC − g∥2
∣∣] (83)

= E [∥yA − g − yC + g∥∥yA − g + yC − g∥] (84)
≤ E [∥yA − yC∥(∥yA − g∥+ ∥yC − g∥)] (85)

≤ E
[
∥yA − yC∥(∥yC − g∥+

√
ϵ)
]

(86)

By subtracting and adding yA in the term ∥yC − g∥, we have

∥yC − g∥ ≤ ∥yA − yC∥+ ∥yA − g∥, (87)

which depends on the triangle inequality. Inserting this into (86), we
have ∣∣E [∥yA − g∥2 − ∥yC − g∥2

]∣∣
≤ E[∥yA − yC∥2] + 2

√
ϵE[∥yA − yC∥]. (88)

With Jensen inequality, we have

E[∥yA − yC∥] ≤
√

E[∥yA − yC∥2]. (89)

With the conclusion in Proposition 2, we have

E
[
∥yA − yC∥2

]
≤ C2

Ln
1−α∥x∥2. (90)

Bring this to (88), we have

|Lr
n − Ln)| ≤ C2n1−α∥x∥2 + 2

√
ϵCn

1−α
2 ∥x∥, (91)

which concludes the proof.

A.3. Proof of Theorem 3

Proof. We first decompose the loss difference between GNN on Sn

and Sm by inserting intermediate terms of loss of GNNs on SDn

and SDm .

|Lr
n − Lr

m| ≤ |Lr
n − Ln|+ |Ln − Lm|+ |Lm − Lr

m| (92)

The first and the third terms in (92) can be bounded with Theorem 1.
The second term can be bounded with Theorem 2.
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