
IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 1

Stability of Aggregation Graph Neural Networks
Alejandro Parada-Mayorga, Zhiyang Wang, Fernando Gama, and Alejandro Ribeiro

Abstract—In this paper we study the stability properties of
aggregation graph neural networks (Agg-GNNs) considering
perturbations of the underlying graph. An Agg-GNN is a hybrid
architecture where information is defined on the nodes of a graph,
but it is processed block-wise by Euclidean CNNs on the nodes
after several diffusions on the graph shift operator. We derive
stability bounds for the mapping operator associated to a generic
Agg-GNN, and we specify conditions under which such operators
can be stable to deformations. We prove that the stability bounds
are defined by the properties of the filters in the first layer of
the CNN that acts on each node. Additionally, we show that
there is a close relationship between the number of aggregations,
the filter’s selectivity, and the size of the stability constants. We
also conclude that in Agg-GNNs the selectivity of the mapping
operators can be limited by the stability restrictions imposed on
the first layer of the CNN stage, but this is compensated by the
pointwise nonlinearities and filters in subsequent layers which are
not subject to any restriction. This shows a substantial difference
with respect to the stability properties of selection GNNs, where
the selectivity of the filters in all layers is constrained by their
stability. We provide numerical evidence corroborating the results
derived, testing the behavior of Agg-GNNs in real life application
scenarios considering perturbations of different magnitude.

Index Terms—Aggregation graph neural networks (Agg-
GNNs), graph signal processing, graph neural networks (GNNs),
convolutional neural networks (CNNs), stability to deformations.

I. INTRODUCTION

Convolutional neural networks (CNNs) have become essen-
tial tools in machine learning. Numerical evidence emerges
every day in diverse applications exhibiting their strengths and
limits, raising fundamental questions about why they perform
well. In recent years stability analyses have been considered to
provide some explanations about their good performance [1]–
[6]. However, non of these results are applicable to hybrid
architectures like aggregation graph neural networks (Agg-
GNNs) [7]. This prompts the question of whether Agg-
GNNs can be stable, and what role the properties of the two
different domains involved in an Agg-GNN play in the stability
analysis.

Agg-GNNs are convolutional architectures that allow the
processing of information supported on graphs by means
of regular or Euclidean CNNs. This is achieved using the
operation of aggregation to capture the distinctive features
of the signals on a graph, and afterwards this information is
processed block-wise by a regular CNN [7]. This versatile
architecture has been used successfully in the problems of
source localization, authorship attribution, text classification,
resource allocation, and flocking in distributed autonomous
systems [7]–[9]. The good performance of Agg-GNNs has

Department of Electrical and Systems Engineering, University of Pennsyl-
vania, Philadelphia, Pennsylvania, USA. Email: {alejopm, zhiyangw, fgama,
aribeiro}@seas.upenn.edu.

been explained by how complex symmetries on the data
are captured by a combination of operators in two different
domains. However, as shown in [4], [7], the use of domain
symmetries only explains partly why convolutional architec-
tures work well. This follows from the fact that both filters
and networks are equally good at leveraging symmetries.
Additionally, unlike filters, networks incorporate pointwise
nonlinearity functions, which points to additional properties
that should explain the superiority of networks over filters.

In recent works, stability analyses have been considered
to explain the good performance of convolutional architec-
tures [3], [4]. Nevertheless, none of those results apply to
hybrid architectures like Agg-GNNs. The main reason for
this lies in the way information is mapped between the two
different domains. In this paper we provide stability results
for Agg-GNNs, considering the perturbation of the underlying
graph relying on the deformation models used in [3]–[5]. The
main contributions of our paper are:

(C1) The derivation of stability bounds for Agg-GNNs with
an arbitrary number of layers in the CNN stage.

(C2) Proving that Agg-GNNs can be stable to perturbations
in the underlying graph.

(C3) Showing that there is a trade-off between stability and
selectivity affecting only the filters in the first layer of
the CNN stage.

The results presented in this paper have several implications
among which we highlight the following:

(I1) The selectivity lost in the first layer of the CNN of
an Agg-GNN with stable filters is compensated by
the nonlinearity functions and the filters in subsequent
layers of the CNN stage.

(I2) Increasing the number of aggregations in an Agg-GNN
provides more flexibility for the selection of the filters
in the CNN stage and at the same time increases directly
the value of the stability constants.

This paper is organized as follows. In Section II we in-
troduce Agg-GNNs discussing in full detail the properties
of the aggregation operator and stating basic notions and
terminology for the rest of the paper. In Section III we discuss
the formal concepts of perturbations, stability in Agg-GNNs,
and we derive the main results of the paper. To corroborate
and visualize the implications of our results we performed a
set of numerical experiments presented in Section IV. Finally,
in Section V we discuss our main results and present some
conclusions.

ar
X

iv
:2

20
7.

03
67

8v
2

 [
cs

.L
G

]
 2

3
A

ug
 2

02
3

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 2

x Sx S2x

x

[x]i

[x]j

[x]k

Sx

[Sx]i

[Sx]j

[Sx]k

S2x

[
S2x

]
i

[
S2x

]
j

[
S2x

]
k

yj,1 = σ1(hj,1 ∗ zj)
zj

yj,2 = σ2(hj,2 ∗ yj,1)

yi,1 = σ1(hi,1 ∗ zi)
zi

yi,2 = σ2(hi,2 ∗ yi,1)

yk,1 = σ1(hk,1 ∗ zk)
zk

yk,2 = σ2(hk,2 ∗ yk,1)

Figure 1. Pictorial depiction of an aggregation Graph Neural Network. First row: representation of the aggregation process on a given node
v ∈ V . The successive application of the shift operator on a graph signal x aggregates information from those nodes in a neighborhood
of v. The larger the number of applications of S the larger is the radius of the neighborhood centered at v – illustrated by the disks with
increasing radius –. Second row: The information processed in the aggregation stage is stored in the matrix A(S){x} and then a Euclidean
CNN is used to process the rows in A(S){x}.

II. AGGREGATION GNNS

Aggregation graph neural networks (Agg-GNNs) are archi-
tectures composed of two stages of processing. This includes
one aggregation stage, where information is collected in the
form of diffused graph signals, and a second stage where
the information is processed considering a Euclidean con-
volutional architecture. Next, we discuss in full detail each
stage of an Agg-GNN starting with the basics of graph signal
processing (GSP), necessary for the formal definition of the
aggregation stage.

A. Aggregation Stage and the Aggregation Operator

We consider data defined on a graph G = (V, E , w) with
node set V , N = |V|, edge set E , and weight mapping w : E →
R+. The structural information of G can be described by the
weight or adjacency matrix W, whose (i, j)-entry is given by
W(i, j) = w(eij), where eij ∈ E is the edge connecting the
nodes labeled by the indices i and j, and where W(i, j) = 0
if (i, j) /∈ E for i ̸= j.

A signal on G is a function from V to R that we associate
with the vector x ∈ RN . Then, the value of the signal on the
i-th node is given by x(i). The standard convolutional signal
processing framework on graphs states that the filter operators
on G are given by the matrix polynomials

h =

K∑
k=0

hkS
k, (1)

where S is any matrix representation of G called the shift
operator [7], [10]–[13]. For our discussions we will assume
S = W, however we point out that equivalent results hold for
any other selection of S. The convolution between the graph
filter h and a graph signal x is given by

x ∗G h =

K∑
k=0

hkS
kx. (2)

Notice that the action of Sk on x diffuses the signal k-times
on the graph – see Fig. 1 (top) –.

Although graph convolutions as indicated in (2) leverage
equivariance and symmetries of information on graphs, there
are alternative ways in which structural information can be
captured. As pointed out in [14], the ordered sequence of
diffusions given by Skx with k = 0, 1, 2, . . . ,K provides
aggregated information on each node of the graph that can
be leveraged to extract meaningful features of a signal. We
formalize this concept in the following definition.

Definition 1 (Aggregation Operator). Let G be a graph
with shift operator S. Then, the matrix aggregation operator
A(S){·} of order “a” acting on a graph signal x is given by

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 3

A(S) {x} =
[
x,Sx,S2x, · · · ,Sax

]
. (3)

The aggregation operator stores the diffused versions of a
graph signal following a strict order defined by the number
of diffusions considered. We point out that A(S) {x} is not a
quantity defined on the graph, although it operates on graph
signals. This is, the operator A(S) {x} embeds the information
on the graph into RN×(a+1).

The aggregation stage of an Agg-GNN consists of the
application of the aggregation operator on a graph signal –
see Fig. 1 (bottom).

B. CNN stage

Once the information is transformed by the aggregation
operator A(S){·} [cf. (3)], conventional Euclidean CNNs are
used to process the aggregated data associated to each node.
This is, an Euclidean CNN in Ra+1 is used to process the rows
of the matrix A(S){x} – see Fig.1 (bottom). After the rows in
A(S){x} are filtered, an operator σ : Ra+1 → Rm maps the
information into the second layer of the CNN stage. In general,
σ = P ◦ η is the composition of a pointwise nonlinearity
η : Ra+1 → Ra+1 and a pooling operator P : Ra+1 → Rm.
Notice that m does not necessarily depend on the number of
aggregations a or the number of nodes, N , in the original
graph. The processing from the second layer up to the last
layer in the CNN stage is defined by the same type of operators
discussed above, i.e. Euclidean filtering operators followed
by pointwise nonlinearities and a pooling operation [15]. To
simplify expressions in our analysis we consider that σ is
Lipschitz with unitary constant and σ(0) = 0. We remark
that these are common assumptions for σ [15].

C. Notation and conventions for Agg-GNNs

Fig. 1 illustrates the basic structure of an Agg-GNN where
the CNN processing stage has two layers. An Agg-GNN
whose underlying graph is described by the shift operator
S and whose CNN stage possesses L layers has a mapping
operator denoted by Φ

(
S, {Hi}Li=1, {σi}Li=1

)
{·}. The symbol

Hi indicates the subsets characterizing properties of the filters
associated with the i-th layer in the CNN stage. In our
analysis it will be useful to consider the operator obtained
by the composition between A(S){·} and the filters in the
first layer of the CNN. Such operator will be represented
by Φ (S,H1) {·}. Additionally, h(ℓ)

i,k represents the k-th filter
coefficient in the i-th row in the layer ℓ of the CNN stage.

If G is a graph with shift operator S the symbol p(S)
denotes a general operator that is a function of S and that
acts on signals defined on G. The action of p(S) on the
graph signal x is denoted by p(S)x. Notice that in the
light of this notation the terms p(S) and p(S̃) are operators
with the same functional form but with different independent
variable, i.e. defined on different graphs. Notice that operators
like Φ

(
S, {Hi}Li=1, {σi}Li=1

)
{·} and Φ (S,H1) {·} can be

considered as particular instantiations of operators with the
notation p(S).

D. Application scenarios of Agg-GNNs

As pointed out in [7] Agg-GNNs have shown advantages
over the traditional selection GNNs in problems such as
source localization, authorship attribution and text classifica-
tion. In [8] Agg-GNNs were used over selection GNNs to
solve a distributed resource allocation problem in wireless
communications. The individual aggregation process on each
node allows the transmitters to make their local allocation
decisions based on limited and delayed information collected
from their neighboring transmitters. In [9] it is shown how
Agg-GNNs provide the best tool among several GNN type
architectures to leverage symmetries and equivariances of
flocking distributions in an autonomous system. In particular
Agg-GNNs are used to find large distributed controllers in
large networks of mobile robots in scenarios when only local
information is available for communications. As indicated in
previous subsections Agg-GNNs have the unique attribute of
combining convolutional operators in graph-like and regular
domains simultaneously. Additionally, as we will show in our
stability discussion while the convolutional filters in the CNN
stage of an Agg-GNN are defined as polynomial functions
of the traditional cyclic time delay operator, their properties
are also characterized when considered as functions where the
independent variable is the matrix representation of the graph.

III. STABILITY OF AGGREGATION GNNS

In this section we present the stability results of the paper.
Since the notion of stability that we consider is stability to
perturbations, we start defining properly the perturbations and
the perturbation models considered in our discussion.

A. Perturbations

Perturbations in GNN architectures are associated to
changes in the underlying graph and therefore can be measured
as changes in the shift operator [3], [4]. In this context we
consider the following definition of perturbations.

Definition 2 (Perturbation Model). Let G be a graph with
shift operator S. We say that the graph G̃ with shift operator
S̃ is a perturbed version of G if

S̃ = S+T(S), (4)

where T(S) is a deformation operator acting on S.

We point out that T(S) can be selected arbitrarily and the
only assumption from T(S) is to be Fréchet differentiable
with respect to S. Then, T(S) allows a rich representation of
synthetic and real life perturbations observed on graphs such
as those considered in [4]–[7], [16]–[20].

Now we discuss specific instantiations of T(S) for the
derivation of concrete stability bounds. We consider pertur-
bations where T(S) is given by

T(S) = T0 +T1S, (5)

where the matrix operators T0 and T1 are independent from
S. Additionally, it is assumed that ∥Tr∥ ≪ 1 for r = 0, 1.

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 4

Notice that the model in (5) includes the perturbations of
graph operators considered in [3]. In particular, if T1 = 0 we
have T(S) = T0 as a generalized additive or absolute pertur-
bation that modifies the entries of S by adding independent
scalar values – see Fig. 2 (left) –. When T0 = 0 we have
T(S) = T1S as a multiplicative perturbation that changes the
entries of S by linear combinations of column-wise entries of
S with independent scalar values – see Fig. 2 (right) –.

B. The Notion of Stability
The definition of stability used for the analysis of any

convolutional architecture is a particular case of the notion
of stability for algebraic operators introduced in [4]. This
definition descends from the notion of stability proposed in [1]
for CNNs in Euclidean spaces. For the analysis of Agg-GNNs
we use this notion of stability – i.e. [4] – which we introduce
next.

Definition 3 (Operator Stability [4]). Let G be a graph with
shift operator S and G̃ a perturbed version of G (Definition 2)
with shift operator S̃. We say that p(S) is Lipschitz stable to
deformations if there exist constants C0, C1 > 0 such that

∥∥∥p(S)x− p(S̃)x
∥∥∥ ≤[

C0 sup
S∈S

∥T(S)∥+ C1 sup
S∈S

∥∥DT(S)
∥∥+O

(
∥T(S)∥2

)] ∥∥x∥∥,
(6)

for all graph signals x. In (6) DT(S) is the Fréchet derivative
of the perturbation operator T with respect to S and S is the
set of admissible shift operators.

To understand the meaning of Definition 3, it is important to
emphasize that the right hand side of (6) is itself a norm, called
the Lipschitz norm ∥ · ∥Lip of T(S). As pointed out in [21]–
[23] the value of ∥T(S)∥Lip is a measure of the size of T
when seen as a diffeomorphism. To elaborate about this, let us
consider Fig. 3, where S is the set of admissible graph shift
operators, Ω ⊂ S is a subset of shifts and Ω̃ is diffeomorphic
image of Ω under T. The function p maps elements from S
into operators. Then, the map p is stable to the deformation T
if the change of p, given by ∥p(S)− p(S̃)∥, is proportional to
or bounded by the size of T, given by ∥T(S)∥Lip. We note that
p is a generic function of S, which includes as particular cases
Φ
(
S, {Hi}Li=1, {σi}Li=1

)
{·} and Φ (S,H1) {·}. Notice that in

Definition 3 it is not required that C0 and C1 belong to any
specific range of values besides being real positive constants.

The stability of operators on convolutional architectures is
not guaranteed for arbitrary filters, and this has been shown
previously in the literature for convolutional architectures on
different domains [4]. Additionally, notice that the modifiable
parameters determining the stability properties in the aggrega-
tion operators are the filters in the CNN stage of the Agg-GNN
described by the sets Hi.

C. Stability theorems
Before stating our stability results we introduce some defi-

nitions necessary to characterize the subsets of filters Hi in the

CNN stage of an Agg-GNN. For the characterization of these
subsets we take into account that filter operators in Euclidean
convolutional models can be written as

h =

K∑
k=0

hkC
k, (7)

where C is the cyclic delay operator. Then, the properties of
the filter h can be characterized by the polynomial function
h(λ) =

∑K
k=0 hkλ

k, where λ is evaluated in C. We will
refer to h(λ) as the polynomial representation of h. In what
follows we introduce some definitions used to describe and
characterize the types of filters relevant to our discussion.

Definition 4. We say that f : C 7→ C is L0-Lipschitz if

|f (λ1)− f (λ2)| ≤ L0 |λ1 − λ2| for all λ1, λ2 ∈ C. (8)

Additionally, we say that f is L1-integral Lipschitz if∣∣∣∣λ df

dλ

∣∣∣∣ ≤ L1 for all λ ∈ C. (9)

With this definition, we say that a filter is Lipschitz and/or
integral Lipschitz if its polynomial representation is Lipschitz
and/or integral Lipschitz, respectively. In what follows we
denote the set of filters that are L0-Lipschitz by AL0

and
the set of L1-integral Lipschitz filters by AL1 .

With all these notions and concepts at hand we are ready to
state our first result in the form of a theorem. In this theorem
we derive bounds for the operator Φ (S,H1) {·} which is a
composition of the aggregation stage and the first layer of the
CNN stage in an Agg-GNN.

Theorem 1. Let S be the shift operator associated to the
graph of an Agg-GNN and let S̃ be its perturbed version in
the sense of the perturbation model specified in (4) and (5).
Let

fi(λ) =

a∑
k=0

h
(1)
i,kλ

k, (10)

and

pm(λ) = λmfi(λ)−
(
λa+1 − 1

)(m∑
r=0

h
(1)
i,a−rλ

m−r

)
. (11)

If fi(λ) ∈ H1 ⊂ AL0
∩ AL1 and pm(λ) ∈ AL0

∩ AL1 for
m = 0, . . . , a, it follows that

∥∥∥Φ (S,H1) {·} − Φ
(
S̃,H1

)
{·}
∥∥∥ ≤

N
√
a+ 1 (L0∥T0∥+ L1∥T1∥ +O

(
∥T(S)∥2

))
. (12)

Proof. See Section III-H1

Theorem 1 highlights that the composition between the
aggregation operator and the filters in the first layer of the
CNN is bounded. Additionally, the bound obtained requires the
filters to be Lipschitz and integral Lipschitz. Such restriction
is imposed not only on the polynomial representation of
the filters, indicated by fi(λ), but also on its cyclic shifted

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 5

1

2

3

4

5

6

S(1, 2) + ϵ1,2

S(1, 3) + ϵ1,3

S(2, 3)

S(2, 4) + ϵ2,4

S(3, 5) + ϵ3,5

S(4, 6) + ϵ4,6

S(5, 6) + ϵ5,6

S(4, 5) 1

2

3

4

5

6

∑
ℓ ϵ1,ℓS(ℓ, 2)

∑
ℓ ϵ1,ℓS(ℓ, 3)

S(2, 3)

∑
ℓ ϵ2,ℓS(ℓ, 4)

∑
ℓ ϵ3,ℓS(ℓ, 5)

∑
ℓ ϵ4,ℓS(ℓ, 6)

∑
ℓ ϵ5,ℓS(ℓ, 6)

S(4, 5)

Figure 2. Examples of graph perturbations that can be obtained with the model T(S) = T0+T1S. Left: we show an example of a generalized
additive perturbation where the entries of S are modified by adding independent scalar values ϵi,j . Right: we depict a generalized multiplicative
perturbation of S where the entries of S are modified by a linear transformation

∑
ℓ ϵi,ℓS(ℓ, j) on the entries of S.

S
Ω

Ω̃

S S̃

Deformation
T

p(S̃)

p(S)

p

p

∥p
(S

)
−

p
(S̃

)∥

∥T∥Lip

Figure 3. A pictorial representation of the notion of stability. The
set S describes the set of admissible graph shift operators for graphs
with a fixed number of nodes. Ω is a subset of graph shift operators
and Ω̃ is its deformed version via the operator T. The function p
maps elements from S into filtering operators. Then, p is said to
be stable if ∥p(S) − p(S̃)∥ ≤ C∥T∥Lip with C > 0 and where
∥T∥Lip is the Lipschitz norm of T given by the right hand side of
(6). The shaded area in blue color indicates in the plane the set of
pairs (∥T∥Lip, ∥p(S)− p(S̃)∥) associated to an filter p that is stable.

versions, indicated by pm(λ). Based on this upper bound and
Definition 3, a stability result can be derived in the following
corollary.

Corollary 1. Let S be the shift operator associated to the
graph of an Agg-GNN and let S̃ be its perturbed version in
the sense of the perturbation model specified in (4) and (5).
Let fi(λ) and pm(λ) be given by (10) and (11), respectively.
Then, if fi(λ) ∈ H1 ⊂ AL0

∩ AL1 and pm(λ) ∈ AL0
∩ AL1

for m = 0, . . . , a, the operator Φ (S,H1) {·} is stable in the
sense of Definition 3 with

C0 = N
√
a+ 1L0, C1 = N

√
a+ 1L1. (13)

Proof. See Appendix A-B.

Notice that the value of the stability constants C0 and
C1 increase directly when the number of aggregations, a, is
increased. At the same time notice that when a is increased,
the order of the filters in the CNN stage is increased, which
introduces more flexibility and degrees of freedom for the
selection of the filters. Indeed, as verified numerically in [8],
in the absence of perturbations in the underlying graph the
performance of an Agg-GNN improves when the number of
aggregations is increased. In particular, there is more flexibility

in the first layer of the CNN stage to choose filters with a wide
range of Lipschitz and integral Lipschitz constants L0 and L1,
respectively. As a consequence of this, the term

√
a+ 1Li in

the stability constants exhibits a tradeoff between the number
of aggregations and the waveforms that can be selected when
given Lipschitz and integral Lipschitz constants. Naturally,
small values of L0 and L1 come at the expense of a loss
in the selectivity of Φ (S,H1) {·}.

In the following theorem we show what is the effect of the
nonlinearity map σ1 after the filtering operation in the first
layer of the CNN stage of an Agg-GNN.

Theorem 2. Let S be the shift operator associated to the
graph of an Agg-GNN and let S̃ be its perturbed version in
the sense of the perturbation model specified in (4) and (5).
Let fi(λ) and pm(λ) be given by (10) and (11), respectively.
Then, if fi(λ) ∈ H1 ⊂ AL0

∩ AL1 and pm(λ) ∈ AL0
∩ AL1

for m = 0, . . . , a the operator Φ (S,H1, σ1) {·} is stable in
the sense of Definition 3 with

C0 = N
√
a+ 1L0, C1 = N

√
a+ 1L1. (14)

Proof. See Section III-H2.

The stability constants in Theorem 2 are identical to those
obtained for the operator Φ (S,H1) {·} in Corollary 1. This
implies that the nonlinearity function σ1 does not affect
the stability. Additionally, we point out that these equations
do not show that there is a substantial difference between
Φ (S,H1) {·} and Φ (S,H1, σ1) {·} in terms of their selec-
tivity. Indeed, the power of representation and selectivity
associated to Φ (S,H1, σ1) {·} is enriched by σ1.

Notice that the restrictions imposed on the filters via pm(λ)
come as a consequence of the cyclic shift operator used
to perform Euclidean convolutions – see Section III-H1 –.
Additionally, the existence of coefficients

{
h
(1)
i,k

}
i,k

such that

pm(λ) is Lipschitz (or integral Lipschitz) for all m = 0, . . . , a
encompasses a strong restriction. There is no such pm(λ) that
can be Lipschitz and integral Lipschitz for all λ ∈ C and
all m = 0, . . . , a. However, it is possible to find such pm(λ)
satisfying those conditions for λ ∈ Ω, where Ω ⊂ C is a closed
bounded set. Observe that minimizing Li is more complex than
the analogous minimization for filters in selection GNNs [3]
since the cyclic shift of the coefficients can substantially
change the functional behavior of pm(λ) – see Fig. 4–. We

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 6

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

λ

−30

−20

−10

0

10

20

30

p m
(λ

)

m =0

m =1

m =2

m =3

m =4

m =5

m =6

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

λ

0

5

10

15

20

25

30

35

|d
p m

(λ
)/
d
λ
|

m =0

m =1

m =2

m =3

m =4

m =5

m =6

Figure 4. A sample of the family of polynomials pm(λ) associated to an Euclidean filter in the first stage of the regular CNN in an Agg-GNN
with a = 6 aggregations. The cyclic shift of the coefficients h

(1)
i,k increases the complexity of reducing the Lipschitz constant of pm for each

m. As indicated with dpm(λ)/dλ, the value of the Lipschitz constant associated to pm (m > 0) can change substantially with respect to
the Lipschitz constant of p0.

remark that the hypothesis λ ∈ Ω is a more realistic scenario
for the analysis of stability in some applications than allowing
λ to take unrestricted values on C.

D. Stability of Aggregation Graph Neural Networks

In this section we present the stability theorem for Agg-
GNNs considering an arbitrary number of layers in the CNN
stage. To derive this theorem we take into account that the
mapping operator of an Agg-GNN is the composition between
Φ(S,H1) and the Euclidean convolutional filters in the CNN
stage starting from the second layer. We also leverage the
stability bounds derived for Φ(S,H1). For the sake of clarity
and simplicity, we suppose that the number of features per
layer in the CNN stage is equal to one. We point out that the
results extend trivially to scenarios where several features are
considered.

Theorem 3. Let Φ
(
S, {Hi}Li=1, {σi}Li=1

)
{·} be the

mapping operator associated to an Agg-GNN and let
Φ
(
S̃, {Hi}Li=1, {σi}Li=1

)
{·} be its perturbed version

according to the perturbation model in Definition 2. Let
fi(λ) and pm(λ) be given by (10) and (11), respectively.
If fi(λ) ∈ H1 ⊂ AL0

∩ AL1 and pm(λ) ∈ AL0
∩ AL1 for

m = 0, . . . , a, then

∥∥Φ (S, {Hi}Li=1, {σi}Li=1

)
{x}−

Φ
(
S̃, {Hi}Li=1, {σi}Li=1

)
{x}

∥∥∥ ≤(
L∏

ℓ=2

Bℓ

)(
C0 sup

S
∥T(S)∥+ C1 sup

S
∥DT(S)∥

)
∥x∥, (15)

where

C0 = N
√
a+ 1L0, C1 = N

√
a+ 1L1. (16)

Bℓ is an upper bound in the magnitude of the filters used in
the ℓth layer of the CNN stage.

Proof. See Section III-H3

Theorem 3 highlights several properties of Agg-GNNs.
First, Agg-GNNs can be stable to deformations of the under-
lying graph. Second, the stability of the whole architecture is
determined by the first layer of the CNN stage, where the fil-
ters are restricted to be Lipschitz and integral Lipschitz. Third,
the power of representation of Φ

(
S, {Hi}Li=1, {σi}Li=1

)
{·}

is enriched by the pointwise nonlinearities σi and the filters
{Hi}Li=2 whose only restriction is to define bounded operators.
This is, the filters starting from the second layer of the CNN
stage can have a totally arbitrary behavior in the frequency
domain, which will help compensate the loss of discrim-
inability of the filters in the first layer due to the Lipschitz
and integral Lipschitz conditions required for stability. This
last aspect remarks a fundamental difference between the
stability theorems for Agg-GNNs and selection GNNs. The
stability theorems for selection GNNs state that the selectivity
of the mapping operators is enriched only by the pointwise
nonlinearities and filters in all the layers of the selection GNN
which are restricted to be Lipschitz and integral Lipschtiz [3].

E. Observations about the Stability Constants

The individual effects of Li and the number of aggregations,
a, in the stability constants are evident from the expression
Ci = N

√
a+ 1Li. This is, the stability constants have a

linear dependency with respect to Li and a square root
dependency with respect to the number of aggregations –
this is corroborated by numerical experiments in Section IV.
However, there is a non trivial behavior of Ci with respect
to minimum possible values of Li for a given number of
aggregations. To see this, notice that as we increase the number
of aggregations, a, the term

√
a+ 1 increases, but at the same

time the family of polynomials available to represent filters
becomes richer. Then, it is easier to learn filters with a low
Li constant. This implies that if the values of L0 and L1 are
enforced by means of a penalization term in the cost function,

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 7

it will become easier to reduce the values of Li for large values
of a. This could lead to scenarios where the effective value of
Ci = N

√
a+ 1Li remains constant even when the number of

aggregations has been increased.
It is important to remark that while we present (15) con-

sidering arbitrary values in the term
(∏L

ℓ=2 Bℓ

)
for the sake

of generality, it is possible to use the normalization Bℓ ≤ 1
without affecting the functional form of the filters. However,
the point we emphasize is that for finite arbitrary values of Bℓ

the stability constants can change according to Bℓ.

F. Sketch of the proofs

In this section we describe the fundamental steps that take
place in the proofs presented in Section III-H. We emphasize
the essential aspects of the proof while leaving the details for
Section III-H. Later on in Section III-G we state a comparison
between the stability results for Agg-GNNs and selection
GNNs.

Before getting into details, we would like to emphasize that
the proofs rely on the following fundamental observations –
details of these observations can be found in Section III-H.

(O1) Although the composition between the aggregation op-
erator and the filters in the first layer of CNN stage is not
a polynomial function of S, it has a norm that is upper
bounded by polynomial functions of S. The coefficients
of these polynomials are the coefficients associated to
the filters in the first layer of the CNN stage in the
Agg-GNN.

(O2) The changes in the polynomial functions that bound the
norms in (O1) can be written in terms of their Fréchet
derivative and the norm of this derivative is bounded
by the Lipschitz and integral Lipschitz constants of the
filters in the first layer of the CNN stage.

(O3) The pointwise nonlinearities in the CNN do not affect
the stability properties of the filters. Additionally, from
the second layer up to the last layer of the CNN, the
filters only change the stability constants associated to
the stability of the operator obtained as the composition
of the aggregation operator and the filters in the first
layer of the CNN.

We start by analyzing the changes in the composition of
the aggregation operator and the filters in the first layer of
the CNN stage. We use the norm of the output difference be-
tween Agg-GNN with original operator and with its perturbed
version,

∥∥∥Φ (S,H1) {·} − Φ
(
S̃,H1

)
{·}
∥∥∥ .

Notice that Φ (S,H1) {·} is not a polynomial function of
S – this is indicated in (29) and (30). However, as we will
show in Section III-H this can be overcome by realizing
that

∥∥∥Φ (S,H1) {·} − Φ
(
S̃,H1

)
{·}
∥∥∥ is upper bounded by

the norm polynomial functions of S and whose coefficients
are the coefficients associated to the filters in the first layer of

the CNN stage of the Agg-GNN. As shown in Section III-H
we have that∥∥∥Φ (S,H1) {·} − Φ

(
S̃,H1

)
{·}
∥∥∥2
F
≤

N(a+ 1)max
i

∥∥∥∥∥
a∑

k=0

hi,k−q

(
Sk − S̃k

)∥∥∥∥∥
2

F

, (17)

where {hi,k−q}i indicates the coefficients of the i-th filter
in the first layer of the CNN stage of the Agg-GNN. The
sub index k − q indicates the cyclic shifting associated to
the coefficients. As mentioned in Section III-C, such cyclic
shifting is a consequence of the fact that the filters in the
CNN are written originally as polynomial functions of the
cyclic time delay operator.

Taking into account that S̃ = S+T(S) = S+(T0 +T1S),
we have that

a∑
k=0

hi,k−q

(
Sk − S̃k

)
=

a∑
k=0

hi,k−q

(
Sk − (T0 +T1S)

k
)
.

(18)
Since the right hand side of (18) is the difference between

a function and its delayed version – where the independent
variable is S –, such difference can be written in terms of the
Fréchet derivative of the function. That is,

a∑
k=0

hi,k−q

(
Sk − (T0 +T1S)

k
)
=

Dpq
i |S(S) {T(S)}+O

(
∥T(S)∥2

)
, (19)

where Dpq
i |S(S){T(S)} is the Fréchet derivative of pq

i =∑a
k=0 hi,k−qS

k acting on T(S).
We now turn our attention to the fact that the terms

∥Dpq
i |S(S){·}∥ are upper bounded by the Lipschitz and in-

tegral Lipschitz constants of pq
i =

∑a
k=0 hi,k−qS

k. More
specifically, in Section III-H we show that if pq

i is L0-Lipschitz
and L1-integral Lipschitz it follows that∥∥∥Dpq

i |S(S) {T(S)}
∥∥∥ ≤ L0

√
N∥T0∥+ L1

√
N∥T1∥. (20)

Now, we put all these results together as follows. We take
the norm of (19) and take into account (18). Then, we replace
the expression obtained in (17) and take into account that ∥ ·
∥ ≤ ∥ · ∥F . Then, we have∥∥∥Φ (S,H1) {·} − Φ

(
S̃,H1

)
{·}
∥∥∥ ≤

N
√
a+ 1 (L0∥T0∥+ L1∥T1∥ +O

(
∥T(S)∥2

))
, (21)

which is the main result stated in Theorem 1. Now, if we take
into account that

∥T0∥ ≤ sup
S∈S

∥T(S)∥, ∥T1∥ ≤ sup
S∈S

∥DT|S(S)∥, (22)

we obtain the result stated in Corollary 1.
To derive the result in Theorem 2 we take into account that

Φ (S,H1, σ1) {·} = σ1 (Φ(S,H1){·}) and ∥σ(a) − σ(b)∥ ≤
∥a− b∥, which leads to∥∥∥σ1 (Φ(S,H1))− σ1

(
Φ(S̃,H1)

)∥∥∥ ≤
∥∥∥Φ(S,H1)− Φ(S̃,H1)

∥∥∥ .
(23)

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 8

Then, (23) jointly with (21) reaches the result stated in
Theorem 2.

Finally, to derive the result of Theorem 3 we take
into account that from the second layer up to the
last layer of the CNN stage we have the same type
of operators, which are given as the composition of
pointwise nonlinearities, σℓ, and Euclidean convolutional
operators Hℓ. This is, Φ

(
S, {Hi}Li=1, {σi}Li=1

)
{·} =

σLH
(L)σL−1H

(L−1) · · ·σ1Φ (S,H1) {·}. Now, taking into
account that σℓ is Lipschitz – with unit constant – and
∥H(ℓ)∥ ≤ Bℓ we have∥∥∥σℓ(H

(ℓ)σℓ−1(α))− σℓ(H
(ℓ)σℓ−1(β))

∥∥∥ ≤ Bℓ ∥α− β∥ .
(24)

Then, by means of the recursive application of (24) and taking
into account (21) and (22) we reach the result presented in
Theorem 3.

G. Comparison with the Stability Results for Selection GNNs

Despite the similarities in form between the stability bounds
for Agg-GNNs in Theorems 1, 2 and 3 and the stability bounds
derived for selection GNNs in [3] and for general CNNs in [4],
there are profound differences.

First, while in [3] and [4] stable operators require all
the filters in all layers to be stable, the stability for Agg-
GNNs is determined by the stability properties of the filters
only in the first layer of the CNN stage. To see this, let
us recall that the mapping operators of the selection GNNs
are a successive composition of perceptron operators. Each
perceptron is the result of composing polynomial operators
and pointwise nonlinearities. Then, the mapping operator of
the selection GNN can be written as

Φsel(S) {·} = σLpL(S) . . . σℓpℓ(S) . . . σ1p1(S){·}, (25)

where pℓ(S) is a filter polynomial in the ℓ-th layer and σℓ is
a pointwise nonlinearity. Notice the contrast between (25) and
the mapping operator of an Agg-GNN given by

ΦAgg-GNN (S) {·} = σLH
(L)σL−1H

(L−1) · · ·σ1Φ (S,H1) {·}.
(26)

We can see that unlike in (25), the dependency on S in (26)
is only associated to the composition between the aggrega-
tion operator and the filters in the first layer of the CNN
stage, i.e. Φ (S,H1) {·}. Then, the restrictions necessary to
guarantee stability in an Agg-GNN are naturally imposed on
Φ (S,H1) {·}, while in (25) every pℓ(S) must have stability
restrictions to guarantee that Φsel(S) {·} is stable as well.

A second fundamental difference between the stability re-
sults for Agg-GNNs and selection GNNs is how the restric-
tions are imposed on the filters. Notice that while the filters
in (25) are originally defined as polynomials where S is the
independent variable, the filters in (26) are initially polynomial
whose independent variable is the traditional Euclidean time
delay operator. This has an important implication in terms
of the meaning of the stability restrictions in each case. The
filters in (25) are polynomials in S and the restrictions on
such polynomials apply directly on those polynomials. In (26)
filters in all layers are polynomials in terms of the time delay

operator and the restrictions on the filters of the first layer of
the CNN stage apply on the same polynomial with S as the
independent variable. This is, the stability restrictions in an
Agg-GNN take place when the Euclidean filters in the first
layer of the CNN are transferred from the Euclidean domain
to the graph domain.

The third fundamental difference in the stability results
between Agg-GNNs and selection GNNs, is how the stability
restrictions are imposed on the polynomial functions – with S
as an independent variable. In selection GNNs we will require
pℓ(S) to be Lipschitz and integral Lipschitz. In Agg-GNNs we
require pq

i =
∑a

k=0 hi,k−q

(
Sk − S̃k

)
to be Lipschitz and

integral Lipschitz for all q = 0, . . . , a, i.e. we require the
sequence {hi,k}i and its multiple cyclic shifted versions to be
Lipschitz and integral Lipschitz. This is partly due to the fact
that while the filters in the first layer of the CNN stage are
defined as functions of the traditional delay operator, they are
constrained to be Lipschitz and integral Lipschitz as functions
of the graph shift operator in the aggregation stage.

Finally, notice that the stability constants in [3] and [4]
depend only on the Lipschitz constants of filters of the
convolutional structure. This contrasts dramatically with the
stability constants in Theorems 1, 2 and 3 for Agg-GNNs that
depend directly on the square root of filter’s degree

√
a+ 1 –

which is given by the number of aggregations. Additionally,
while the stability bounds derived in [3], [4] assume that the
independent variable of the spectral representation of the filters
can take arbitrary values on the field of interest, the bounds for
Agg-GNNs assume that such variable belongs to a bounded
set of arbitrary size.

H. Proof of Theorems

Before presenting the proofs of the main results of this
paper, we introduce some notation that will be useful in the
derivations. In particular, we consider vectorized representa-
tions of A(S) {x}. We will use the row aggregation operator
aR(S){·} given by

aR(S){x} = [[x]1, [Sx]1, . . . , [S
ax]1, [x]2, [Sx]2,

. . . , [Sax]2, . . .]
T
, (27)

which is a row vectorization form of A(S) {x}. Then, the
action of filters in the first layer of the CNN can be expressed
as HaR(S){x}, with

H =


H1 0 · · · 0
0 H2 0 · · · 0
...

...
...

...
...

0 0 · · · 0 HN

 , (28)

where Hj ∈ R(a+1)×(a+1) is a convolution operator (filter)
for j = 1 . . . N , i.e. Hj is a circulant matrix.

1) Proof of Theorem 1: To simplify notation let us consider
Φ(S,H1){·} = F(S), with

F(S) = HaR(S) =
[
F1(S)

T,F2(S)
T, . . . ,FN (S)T

]T
,
(29)

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 9

where

Fi(S) =

(a∑
k=0

hi,kr
k
i

)T

,

(
a∑

k=0

hi,k−1r
k
i

)T

,

(
a∑

k=0

hi,k−2r
k
i

)T

, . . .

T

, (30)

and rki is the ith row of Sk.
Then, we take into account that rki = eiS

k, where ei is the
row vector whose ith entry equals 1 and all other components
equal zero. Then, the Frobenius squared norm of the difference
between Fi(S) and Fi(S̃) can be written as

∥∥∥Fi(S)− Fi(S̃)
∥∥∥2
F
=

a∑
q=0

∥∥∥∥∥
a∑

k=0

hi,k−qei

(
Sk − S̃k

)∥∥∥∥∥
2

F

.

(31)
As a consequence of the operator norm property, the right

hand side of (31) satisfy the inequality∥∥∥∥∥
a∑

k=0

hi,k−qei

(
Sk − S̃k

)∥∥∥∥∥
F

≤
∥∥∥∥∥

a∑
k=0

hi,k−q

(
Sk − S̃k

)∥∥∥∥∥
F

.

(32)
We now turn our attention to the right hand side of (32).

Exploiting the relationship between the Frobenius norm and
the ℓ2-norm we have

∥∥∥∥∥
a∑

k=0

hi,k−q

(
Sk − S̃k

)∥∥∥∥∥
F

≤
√
N

∥∥∥∥∥
a∑

k=0

hi,k−q

(
Sk − S̃k

)∥∥∥∥∥ .
(33)

Now, we are going to relate the right hand side of (33) with
the Fréchet derivative of

∑a
k=0 hi,k−qS

k using Theorem 4,
which allows us to obtain

∥∥∥∥∥
a∑

k=0

hi,k−q

(
Sk − S̃k

)∥∥∥∥∥ ≤∥∥∥Dpq
i |S(S) {T(S)}

∥∥∥+O
(
∥T(S)∥2

)
, (34)

where pq
i =

∑a
k=0 hi,k−qS

k.
If we replace T(S) = T0+T1S inside the argument of the

Fréchet derivative operator (linear) we obtain∥∥∥Dpq
i |S(S) {T(S)}

∥∥∥ =
∥∥∥Dpq

i |S(S) {T0}+Dpq
i |S(S) {T1S}

∥∥∥ ,
(35)

and applying the triangular inequality we get

∥∥∥Dpq
i |S(S) {T(S)}

∥∥∥ ≤∥∥∥Dpq
i |S(S) {T0}

∥∥∥+ ∥∥∥Dpq
i |S(S) {T1S}

∥∥∥ . (36)

We proceed to analyze the two terms in the right hand side
of (36). We start analyzing the action of the Fréchet derivative

on T0 taking into account the relationship between the ℓ2-
norm and the Frobenius norm to obtain∥∥∥Dpq

i |S(S) {T0}
∥∥∥ ≤∥∥∥Dpq

i |S(S) {T0}
∥∥∥
F
=
∥∥∥vec

(
Dpq

i |S(S) {T0}
)∥∥∥ , (37)

where vec(·) is the vectorization operator. Additionally, we
have that∥∥∥vec

(
Dpq

i |S(S) {T0}
)∥∥∥ =

∥∥∥Dpq
i |S(S)vec (T0)

∥∥∥ , (38)

where the symbol Dpq
i |S(S) represents the operator associated

to Dpq
i |S acting on the vectorized version of T0.

Applying the operator norm property it follows that∥∥∥Dpq
i |S(S)vec (T0)

∥∥∥ ≤
∥∥∥Dpq

i |S(S)
∥∥∥ ∥vec (T0)∥ . (39)

As proven in [24] (p.61, p.331), the spectrum of Dpq
i |S(S)

is given by

ζrs =


pq
i (λr)−pq

i (λs)

λr−λs
if λr ̸= λs

dpq
i

dλ |λ=λr
if λr = λs

, (40)

where pqi (λ) = pq(λ) as defined in (11).
Then, since pqi (λ) is L0-Lipschitz for all q = 0, . . . , a it

follows that |ζrs| ≤ L0 and therefore
∥∥∥Dpq

i |S(S)
∥∥∥ ≤ L0.

Plugging this result in (39) we obtain∥∥∥Dpq
i |S(S)vec (T0)

∥∥∥ ≤ L0 ∥vec (T0)∥ = L0 ∥T0∥F . (41)

If we now take into account (41) and use it in (37) we have∥∥∥Dpq
i |S(S) {T0}

∥∥∥ ≤ L0∥T0∥F ≤ L0

√
N∥T0∥. (42)

We turn our attention now to the term ∥Dpq
i |S(S) {T1S} ∥.

For this part of the analysis we use the following notation. We
let D̃(S) {T1} = Dpq

i |S(S) {T1S}.
We start taking into account that the relationship between

the operator norm, the Frobenius norm and the vectorization
operator vec(·) for the term D̃(S) {T1}. This leads us to∥∥∥D̃(S) {T1}

∥∥∥ ≤
∥∥∥D̃(S) {T1}

∥∥∥
F
=
∥∥∥vec

(
D̃(S) {T1}

)∥∥∥ .
(43)

Additionally, we have∥∥∥vec
(
D̃(S) {T1}

)∥∥∥ =
∥∥∥D̃(S)vec (T1)

∥∥∥ , (44)

where D̃(S) is the operator associated to D̃ acting on the
vectorized version of T1. Then, applying the operator norm
property in the right hand side of (44) we have∥∥∥D̃(S)vec (T1)

∥∥∥ ≤
∥∥∥D̃(S)

∥∥∥ ∥vec (T1)∥ . (45)

As proven in [24] (p.61 and p.331) the spectrum of the
operator D̃(S) is given by

ζrs =


pq
i (λr)−pq

i (λs)

λr−λs
λr if λr ̸= λs

λr
pq
i

dλ |λr
if λr = λs

. (46)

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 10

Taking into account that the filters belong to AL1
we have

that |ζrs| ≤ L1 and therefore it follows that ∥D̃(S)∥ ≤ L1.
Replacing this into (45) we get∥∥∥D̃(S)vec (T1)

∥∥∥ ≤ L1 ∥vec (T1)∥ = L1 ∥T1∥F . (47)

Then, we have∥∥∥Dpq
i |S(S) {T1S}

∥∥∥ ≤ L1∥T1∥F ≤ L1

√
N∥T1∥. (48)

Finally, putting together (42) and (48) into (36) allows us
to obtain∥∥∥Dpq

i |S(S) {T(S)}
∥∥∥ ≤ L0

√
N∥T0∥+ L1

√
N∥T1∥. (49)

Combining this with (34) it follows that

∥∥∥∥∥
a∑

k=0

hi,k−q

(
Sk − S̃k

)∥∥∥∥∥ ≤ L0

√
N∥T0∥+ L1

√
N∥T1∥

+O
(
∥T(S)∥2

)
. (50)

Now, taking into account the relationship between the ℓ2-
norm and the Frobenius norm in (50) we have

∥∥∥∥∥
a∑

k=0

hi,k−q

(
Sk − S̃k

)∥∥∥∥∥
F

≤ L0N∥T0∥+ L1N∥T1∥

+O
(
∥T(S)∥2

)
, (51)

Then, combining (51) and (32) it follows that∥∥∥∥∥
a∑

k=0

hi,k−qei

(
Sk − S̃k

)∥∥∥∥∥
F

≤ L0N∥T0∥+ L1N∥T1∥

+O
(
∥T(S)∥2

)
. (52)

Taking into account (31) and combining with (52) we have

∥∥∥Fi(S)− Fi(S̃)
∥∥∥2
F
≤ (a+ 1) (L0N∥T0∥+ L1N∥T1∥

+O
(
∥T(S)∥2

))2
. (53)

Then, in virtue of the relaionship between F(S) and Fi(S)
indicated in (29) we have∥∥∥F(S)− F(S̃)

∥∥∥2
F
≤ (a+ 1)N (L0N∥T0∥+ L1N∥T1∥

+O
(
∥T(S)∥2

))2
. (54)

Taking the square root on both sides we obtain∥∥∥F(S)− F(S̃)
∥∥∥
F
≤ N

√
a+ 1 (L0∥T0∥+ L1∥T1∥

+O
(
∥T(S)∥2

))
. (55)

Taking into account the relationship between the ℓ2-norm
and the Frobenius norm we finally have

∥∥∥F(S)− F(S̃)
∥∥∥ ≤ N

√
a+ 1 (L0∥T0∥+ L1∥T1∥

+O
(
∥T(S)∥2

))
. (56)

2) Proof of Theorem 2: First notice that Φ(S,H1, σ1) =
σ1 (Φ(S,H1)). Since σ1 is Lipschitz with unitary constant we
have∥∥∥σ1 (Φ(S,H1))− σ1

(
Φ(S̃,H1)

)∥∥∥ ≤
∥∥∥Φ(S,H1)− Φ(S̃,H1)

∥∥∥ ,
(57)

and taking into account Theorem 1 we have∥∥∥Φ(S,H1, σ1)− Φ(S̃,H1, σ1)
∥∥∥ ≤

N
√
a+ 1 (L0∥T0∥+ L1∥T1∥ +O

(
∥T(S)∥2

))
. (58)

Now we take into account that

∥T0∥ ≤ sup
S∈S

∥T(S)∥, ∥T1∥ ≤ sup
S∈S

∥DT|S(S)∥, (59)

which completes the proof.
3) Proof of Theorem 3 :

Proof. We start calculating the norm of the difference between
the mapping operator of an Agg-GNN and its perturbed
version as follows

∥∥Φ (S, {Hi}Li=1, {σi}Li=1

)
{·}

−Φ
(
S̃, {Hi}Li=1, {σi}Li=1

)
{·}
∥∥∥

=
∥∥∥σLH

(L)σL−1H
(L−1) · · ·σ1Φ (S,H1) {·}−

σLH
(L)σL−1H

(L−1) · · ·σ1Φ
(
S̃,H1

)
{·}
∥∥∥ , (60)

where H(ℓ) represents the filter operator in the ℓ-layer of the
CNN stage. Since σℓ is Lipschitz with unitary constant we
have∥∥∥σℓ(H

(ℓ)σℓ−1(α))− σℓ(H
(ℓ)σℓ−1(β))

∥∥∥ ≤
∥∥∥H(ℓ)

∥∥∥ ∥α− β∥ ,
(61)

for all ℓ. Then, using eqn. (61) recursively in eqn. (60) and
taking into account that ∥H(ℓ)∥ ≤ Bℓ we have

∥∥Φ (S, {Hi}Li=1, {σi}Li=1

)
{·}

−Φ
(
S̃, {Hi}Li=1, {σi}Li=1

)
{·}
∥∥∥ ≤(

L∏
ℓ=2

Bℓ

)∥∥∥Φ (S,H1) {·} − Φ
(
S̃,H1

)
{·}
∥∥∥ . (62)

By means of Corollary 1, it follows that

∥∥Φ (S, {Hi}Li=1, {σi}Li=1

)
{·}

−Φ
(
S̃, {Hi}Li=1, {σi}Li=1

)
{·}
∥∥∥ ≤(

L∏
ℓ=2

Bℓ

)(
L0 sup

S
∥T(S)∥+ L1 sup

S
∥DT(S)∥

)
.

The proof is completed taking into account that∥∥Φ (S, {Hi}Li=1, {σi}Li=1

)
{x}

∥∥ ≤∥∥Φ (S, {Hi}Li=1, {σi}Li=1

)
{·}
∥∥ ∥x∥ . (63)

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 11

xi(1)

xi(2)

xi(3)

xi(4)

known xi(k)

xi(5)

xi(6)

xi(7)

xi(8)

unknown xi(k)

Figure 5. Graph model where each node represents a movie and the
edge weights of the graph are given by rating similarities (Pearson
correlation). The graph signals of interest indicate the ratings of the
movies for a given user. In the picture xi(k) indicates the rating of
the k-th movie given by the i-th user. Known ratings are depicted in
black color and unknown ratings in red color.

IV. NUMERICAL EXPERIMENTS

In this section we perform several numerical experiments
that allow us to evaluate and validate the stability results
derived in previous sections. To perform our experiments
we consider two real life application scenarios, a movie
recommendation problem and a power allocation problem in
a wireless communication system. In each case we perform
experiments to evaluate the effect of the Lipschitz and in-
tegral Lipschitz constants Li, the effect of the number of
aggregations and the effect of the individual components of
the perturbation model where is also possible to observe the
effect of the number of aggregations.

A. Movie Recommendation

We formalize the problem with a graph model where each
node represents a movie and each edge weight is the rating
similarity between each pair of movies [25]. The movie ratings
given by a user can be seen as a graph signal. Based on the rat-
ings a user has given to the movies and the underlying movie
similarity graph structure, we can make rating estimations for
this user on some specific unseen movie – see Fig. 5 –. In
what follows we evaluate the stability of Agg-GNNs under a
synthetic additive and multiplicative perturbations.
Dataset. We use the MovieLens-100k dataset which contains
100,000 movie ratings given by 943 users to 1,582 movies
[26]. Ratings range from 1 to 5 while high ratings represent
high recommendations. The movies with the highest number of
available ratings is chosen to be the specific movie to estimate
the rating. Here we choose Star Wars as the target movie.
Architectures. We consider both selection GNN (Sel-
GNN) [27] and Agg-GNN (AggGNN) architecures as the

parametrization of the mapping. The selection GNN has 2
layers with F0 = 1, F1 = 32, F2 = 8 features and 5 filter
taps in each layer. The CNN in the Agg-GNN is set with the
same parameter setting. The nonlinearity function is ReLU.
We add penalty terms in the loss function to minimize both
Lipschitz and integral Lipschitz constants of the trained filter
functions in the first layer of the CNN stage. We use the
term “AggGNNwithPel” to label numerical results in those
scenarios where we add a penalty term in the cost learning
function to minimize the Lipschitz and integral Lipschitz
constants of the filters in the first layer of the CNN stage. The
term “AggGNNNoPel” is the label for those results in which
the filters are Lipschitz and integral Lipschitz but no penalty
term is used to reduce the value of the Lipschitz and integral
Lipschitz constants. The number of aggregations in the Agg-
GNN architectures is set as the number of nodes in the graph
a = N (‘AggGNNNoPelN’, ‘AggGNNWithPelN’), half of the
number of nodes a = N/2 (‘AggGNNNoPelN2’, ‘AggGN-
NWithPelN2’), quarter of the number of nodes a = N/4
(‘AggGNNNoPelN4’, ‘AggGNNWithPelN4’) and one eighth
of the number of nodes a = N/8 (‘AggGNNNoPelN8’,
‘AggGNNWithPelN8’) with N = 943.
Training setting. We train the architectures with ‘NoPel’
by minimizing a smooth L1 loss while the others minimize
a smooth L1 loss plus a penalty term to regularize the
smoothness of the filter functions in the first layer. We use an
ADAM optimizer with learning rate set as 0.005 and forgetting
factors set as 0.9, 0.999. We run 10 data realizations to get
an average performance of these architectures. In each data
realization, we train for 50 epochs with the size of batch set
as 10. The discriminability is evaluated with the Root Mean
Squared Error (RMSE), which simply measures the differences
between predicted and observed ratings and is commonly used
in the movie recommendation problem. While for the stability
property, we evaluate with the difference of the outputs of the
final graph filter layers based on the original graph and the
perturbed graph, which is consistent with the left side of (15)
in Theorem 3.
Discriminability. By testing all the trained architectures, we
can get the performance averaging across data realizations in
Table I. We can see that the Agg-GNN slightly outperforms
selection GNN when the number of aggregations are large.

Architecture RMSE
SelGNN2LyWithPel 1.2389± 0.0518
SelGNN2LyNoPel 1.2851± 0.0975
AggGNNWithPelN 1.1388± 0.0612
AggGNNNoPelN 1.2588± 0.0959
AggGNNWithPelN2 1.2667± 0.0836
AggGNNWithPelN4 1.3148± 0.0183

Table I: RMSE test results for all the trained architectures.

Stability. We generate a random additive and multiplicative
perturbation matrices E and E1 with ∥E∥ and ∥E1∥ growing
from 0.005 to 0.03 linearly. The perturbed graph matrix is then
built as Ŝ = S + E1 for additive perturbation, Ŝ = S + ES
for multiplicative perturbation and Ŝ = S + ES + E1 for
combined perturbation. We measure the stability by evaluating
the difference of the outputs of the final graph filter layer.
In Fig. 6, we can see that with small Lipschitz and integral

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 12

0.005 0.010 0.015 0.020 0.025 0.030

ε

0.1

0.2

0.3
‖Φ

(S
,x

)
−

Φ
(Ŝ
,x

)‖
AggGNNNoPelN4

AggGNNWithPelN4

AggGNNNoPelN8

AggGNNWithPelN8

Figure 6. The output difference of Agg-GNNs with different number
of aggregations under synthetic additive and multiplicative perturba-
tions – both norms bounded by ϵ – in the underlying graph with
N nodes. The learned filters in the Agg-GNNs are trained with or
without Lipschitz and integral Lipschitz penalty terms.

0.005 0.010 0.015 0.020 0.025 0.030

ε

0.00

0.25

0.50

0.75

1.00

1.25

‖Φ
(S
,x

)
−

Φ
(Ŝ
,x

)‖

AggGNNWithPelN

AggGNNWithPelN2

AggGNNWithPelN4

AggGNNWithPelN8

Figure 7. The output difference of Agg-GNNs with different number
of aggregations under synthetic additive perturbations whose norms
are bounded by ϵ in the underlying graph with N nodes. The learned
filters in the Agg-GNNs are trained with Lipschitz penalty terms.

Lipschitz constants, AggGNNs are more stable compared
to general filters with large Lipschitz and integral Lipschitz
constants. Additionally, we can observe that AggGNNs with
more aggregation steps are less stable as ϵ grows. This can be
more clearly observed in Fig. 7, Fig. 8 and Fig. 9 for additive,
multiplicative and combined perturbations. This verifies our
result in Theorem 3 that the stability bounds of Agg-GNNs
grow directly with the size of perturbations.

In Fig. 10, we study the relationship between the stability
and the number of aggregations a of Agg-GNNs with different
levels of both additive and multiplicative perturbations. We can
observe that the output difference scales with

√
a+ 1 as we

have proposed in Theorem 3.

B. Wireless Resource Allocation

We model the wireless network as a graph model with
the transmitters seen as graph nodes and the channel links
as edges. Based on the channel states, we parameterize the
decentralized power allocation policy as Agg-GNN to maxi-
mize the sum of capacity. The stability of Agg-GNNs is shown
under a synthetic absolute perturbation to the channel states,

0.005 0.010 0.015 0.020 0.025 0.030

ε

0.00

0.25

0.50

0.75

1.00

1.25

‖Φ
(S
,x

)
−

Φ
(Ŝ
,x

)‖

AggGNNWithPelN

AggGNNWithPelN2

AggGNNWithPelN4

AggGNNWithPelN8

Figure 8. The output difference of Agg-GNNs with different number
of aggregations under synthetic multiplicative perturbations whose
norms are bounded with ϵ in the underlying graph with N nodes. The
learned filters in the Agg-GNNs are trained with integral Lipschitz
penalty terms.

0.005 0.010 0.015 0.020 0.025 0.030

ε

0.0

0.5

1.0

1.5

2.0

‖Φ
(S
,x

)
−

Φ
(Ŝ
,x

)‖

AggGNNWithPelN

AggGNNWithPelN2

AggGNNWithPelN4

AggGNNWithPelN8

Figure 9. The output difference of Agg-GNNs with different number
of aggregations under synthetic perturbations in the underlying graph
with N nodes with the norm of both additive and multiplicative
perturbation matrix norm bounded as ϵ. The learned filters in the
Agg-GNNs are trained with Lipschitz and integral Lipschitz penalty
terms.

N
/6

N
/3

N
/2

2
N

/3

5
N

/6 N

Aggregation Length

0.0

0.1

0.2

0.3

0.4

‖Φ
(S
,x

)
−

Φ
(Ŝ
,x

)‖

ε = 0.002

ε = 0.003

ε = 0.004

ε = 0.005

Figure 10. The output difference of Agg-GNNs under synthetic
perturbations in the underlying graph with N nodes with respect
to a growing number of aggregations. The filters in the Agg-GNNs
are trained with Lipschitz and integral Lipschitz penalty terms. The
labels of different perturbation levels ϵ indicate the norms of both
the additive and multiplicative perturbation matrices.

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 13

Figure 11. Graph model for wireless ad-hoc network where each node
represents a transmitter and the edge weights are channel conditions
between unpaired transmitters and receivers. The goal is to allocate
suitable resource on each transmitter to guarantee its performance
while avoiding to cause interference to other unpaired receivers.
Figure adapted from [8].

0.10 0.12 0.14 0.16 0.18

ε

0.05

0.10

0.15

0.20

‖Φ
(S
,x

)
−

Φ
(Ŝ
,x

)‖

AggGNNWithPelN

AggGNNWithPelN2

AggGNNWithPelN4

AggGNNWithPelN8

Figure 12. The output difference of Agg-GNNs with different number
of aggregations under synthetic additive and multiplicative perturba-
tions – both norms bounded by ϵ – in the underlying graph with
N nodes. The learned filters in the Agg-GNNs are trained with or
without Lipschitz and integral Lipschitz penalty terms

which reflects the environmental and measurement noise in
the practical setting.

Problem setup. We model the ad-hoc wireless network
with N = 160 transmitters where each transmitter i ∈
{1, 2, . . . , N} is paired with a unique receiver r(i) as Fig. 11
shows. Each transmitter is randomly dropped within a range
of 80m × 40m and the paired receiver is dropped ran-
domly within a circle of radius 20m around the transmit-
ter. The channel states between each transmitter and re-
ceiver is denoted as a matrix S with each entry sij ∈
R+ representing the link state between transmitter i and
receiver r(j). The goal is to map the local channel in-
formation to an optimal local power allocation strategy
p(H(S)) = [p1(H1(S)), p2(H2(S)), . . . pN (HN (S))]. The
communication rate between transmitter i and receiver r(i)
is denoted as fi which is determined by a combination of
channel state S and allocation strategy p. The problem of
finding an optimal power allocation strategy to maximize the

0.10 0.12 0.14 0.16 0.18

ε

0.025

0.050

0.075

0.100

0.125

‖Φ
(S
,x

)
−

Φ
(Ŝ
,x

)‖

AggGNNNoPelN4

AggGNNWithPelN4

AggGNNNoPelN8

AggGNNWithPelN8

Figure 13. The output difference of Agg-GNNs with different number
of aggregations under synthetic in the underlying graph with N nodes
with the norm of both additive and multiplicative perturbatino matrix
bounded as ϵ. The learned filters in the Agg-GNNs are trained with
Lipschitz and integral Lipschitz penalty terms.

N
/6

N
/3

N
/2

2N
/
3

5N
/
6 N

Aggregation Length

0.00

0.05

0.10

0.15

0.20

‖Φ
(S
,x

)
−

Φ
(Ŝ
,x

)‖

ε = 0.1

ε = 0.15

ε = 0.2

Figure 14. The output difference of Agg-GNNs under synthetic
perturbations in the underlying graph with N nodes with respect
to a growing number of aggregations. The filters in the Agg-GNNs
are trained with Lipschitz and integral Lipschitz penalty terms. The
labels of different perturbation levels ϵ indicate the norms of both
the additive and multiplicative perturbation matrices.

sum of communication rates can be formulated numerically as

f∗ = max
p(H(S))

N∑
i=1

fi (64)

s.t. fi = E

log
1 +

|sii|2pi(Hi(S))

1 +
∑
j ̸=i

|sij |2pj(Hj(S))


 ,

E[1Tp] ≤ Pmax, pi(Hi(S)) ∈ {0, p0},
(65)

where Pmax is the total power budget.
Architectures. We parameterize the power allocation policy
as an Agg-GNN architecture. The CNN in the Agg-GNN has
3 layers with 5 filter taps in each layer. The nonlinearity
function is ReLU. We use the term “AggGNNwithPel” to
label numerical results in those scenarios where we add a
penalty term in the loss function to minimize the Lipschitz
and integral Lipschitz constants of the filters in the first layer
of the CNN stage. The term “AggGNNNoPel” is the label

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 14

for those results in which the filters are Lipschitz and integral
Lipschitz but no penalty term is used to reduce the value of
the Lipschitz and integral Lipschitz constants. The number
of aggregations in the Agg-GNN architectures is set as the
number of nodes in the graph (‘AggGNNNoPelN’), half of
the number of nodes (‘AggGNNNoPelN2’), quarter of the
number of nodes (‘AggGNNNoPelN4’, ‘AggGNNWithPelN4’)
and one eigth of the number of nodes (‘AggGNNNoPelN8’,
‘AggGNNWithPelN8’) respectively.
Training setting. We train the architectures with ‘NoPel’ by
a primal-dual updating method while the others minimize the
loss plus a penalty term to regularize the smoothness of the
filter function in the first layer. We use an ADAM optimizer
with learning rate set as 0.005 and forgetting factors set as
0.9, 0.999. We run 50 network realizations to get an average
performance of these architectures. In each data realization, we
train for 4,000 iterations. The evaluation metric is the average
capacity of all the transmitter-receiver pairs in the wireless
network under the resource allocation policy.
Discriminability. By testing all the trained architectures after
4, 000 iterations, we can get the average capacity of over
each channel averaging across random channel conditions in
Table II. We can see that Agg-GNNs perform better when
the number of aggregations are larger as more information is
aggregated for making the optimal decision.

Architecture Average capacity
AggGNNWithPelN 0.2350± 0.061
AggGNNNoPelN 0.1904± 0.036
AggGNNWithPelN2 0.1774± 0.087
AggGNNWithPelN4 0.1728± 0.054

Table II: Average capacity results for all the trained architec-
tures.

Stability. We model the environmental noise caused by the
potential position changing in practice as an additive pertur-
bation matrix A and multiplicative perturbation matrix A1

with ∥A∥ and ∥A1∥ growing form 0.1 to 0.2. The perturbed
channel state matrix is then Ŝ = S+AS+A1. The stability
is measured by evaluating the difference of the outputs of
the final graph filter layer. Fig. 12 shows the effect of the
regularity of the Lipschitz and integral Lipschitz continuity of
the filters used in the training. We can observe that, the Agg-
GNNs with Lipschitz and integral Lipschitz penalty terms are
more stable. Fig. 13 shows Agg-GNNs are less stable with
more aggregations as the perturbation level ϵ grows. Fig. 14
verifies the relationship between the stability and the number
of aggregations a, which is accordant with our observations
in Section IV-A.

V. DISCUSSION AND CONCLUSIONS

We have shown that Agg-GNNs can be stable to deforma-
tions of the underlying graph while keeping their selectivity
power. This stability guarantee imposes restrictions only on
the filters of the first layer of the CNN stage. The Agg-
GNN compensates the discriminability lost in the first layer
of the CNN stage with pointwise nonlinearities and filters in
subsequent layers.

The restrictions on the filters in the first layer of the CNN
are defined by conditions on the functions pm(λ) = λmfi(λ)−(
λa+1 − 1

) (∑m
r=0 h

(1)
i,a−rλ

m−r
)
, that describe cyclic shifted

versions of the spectral representation of the filters given by
fi(λ) =

∑a
k=0 h

(1)
i,kλ

k. This is a consequence of the cyclic
time-delay operator used in Euclidean convolutions. Then,
the imposition of Lipschitz and integral Lipschitz conditions
on the operators translates into imposing such restrictions on
pm(λ) for all m = 1, . . . , a. This contrasts with the stability
bounds of selection GNNs where conditions are imposed only
on the functional form of the filters.

As indicated in Theorems 1, 2 and 3, the number of
aggregations in the Agg-GNN affects directly the stability
constants, which is corroborated in the numerical experiments
performed in Section IV. This highlights a fundamental trade-
off between flexibility of representation and stability. This is, a
large number of aggregations allows one to have filters that can
approximate a broad class of signals, but it severely affects the
stability. We also remark that for a fixed value of the number
of aggregations it is possible to reduce the value of C0 and
C1 in the stability bound by reducing the size of the Lipschitz
and integral Lipschitz constants of the filters in the first layer
of the CNN.

It is essential to emphasize that although the filters of the
Agg-GNN are defined on a Euclidean regular domain, their
properties translate or are transfered to polynomial functions
whose independent variable is the shift operator of the graph.
This can be observed in the proof of Theorem 1 – see
Section III-H1, equation (31) –, where the conditions that
determine the stability are imposed on the set of matrix
polynomials pm(S). This emphasizes how the processing of
information on the regular stage is deeply ingrained with the
type of convolutional processing carried out on the graph.

Given the attributes of Agg-GNNs, some questions open
up about future applications. First, it would be interesting to
know if the advantages of Agg-GNNs can be observed in
extensions of aggregation architectures to other domains. An
affirmative answer to this question would lead to emergent
hybrid architectures considering shift operators in generic
algebraic signal models. Second, there is the question of
whether the stability properties are universal or can only be
derived for a specific variety of the combinations of domains.

APPENDIX A
AUXILIARY RESULTS

A. Preliminary results

First, we start proving a theorem we will use in subsequent
subsections. In what follows the symbol F(S) will denote the
function F : RN×N → RI×J and whose independent variable
is given by the operator S ∈ RN×N .

Theorem 4. Let S ∈ RN×N be the shift operator associated
to a graph and let S̃ = S + T(S) be a perturbed version of
S. Then, it follows that

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 15

∥∥∥F(S)x− F(S̃)x
∥∥∥ ≤ ∥x∥

(∥∥DF|S(S) {T(S)}
∥∥+

O
(
∥T(S)∥2

))
, (66)

where DF|S(S) is the Fréchet derivative of F(S) with respect
to S and evaluated at S.

Proof. We say that F(S) as a function of S is Fréchet
differentiable at S if there exists a bounded linear operator
DF|S(S) such that [28], [29]

lim
∥ξ∥→0

∥∥F(S+ ξ)− F(S)−DF|S(S) {ξ}
∥∥

∥ξ∥ = 0. (67)

Using Landau notation we can rewrite eqn. (67) as

F(S+ ξ)− F(S) = DF|S(S) {ξ}+ o(∥ξ∥). (68)

Calculating the norm in eqn. (68) and applying the triangle
inequality we have:

∥F(S+ ξ)− F(S)∥ ≤
∥∥DF|S(S) {ξ}

∥∥+O
(
∥ξ∥2

)
, (69)

for all ξ ∈ RN×N . Taking into account that

∥F(S+ ξ)x− F(S)x∥ ≤ ∥x∥ ∥F(S+ ξ)− F(S)∥ , (70)

and selecting ξ = T(S) we complete the proof.

B. Proof of Corollary 1

First, we start calculating the Fréchet derivative of T(S) =
T0 +T1S. We take into account that

T(S+ ξ)−T(S) = T1ξ. (71)

Since the action of the operator T1ξ on ξ is linear, we have
that DT(S){ξ} = T1ξ. Then, it follows that ∥DT(S)∥ =
∥T1∥, and therefore

∥T1∥ ≤ sup
S

∥DT(S)∥. (72)

On the other hand, it trivially follows that

∥T0∥ ≤ sup
S

∥T0 +T1S∥. (73)

REFERENCES

[1] S. Mallat, “Group invariant scattering,” Communications on Pure and
Applied Mathematics, vol. 65, no. 10, pp. 1331–1398, 2012. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21413

[2] D. Zou and G. Lerman, “Graph convolutional neural networks via
scattering,” Applied and Computational Harmonic Analysis, 1 2019.

[3] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph neural
networks,” IEEE Transactions on Signal Processing, vol. 68, pp. 5680–
5695, 2020.

[4] A. Parada-Mayorga and A. R. Ribeiro, “Algebraic neural networks:
Stability to deformations,” IEEE Transactions on Signal Processing, pp.
1–1, 2021.

[5] A. Parada-Mayorga and A. Ribeiro, “Stability of algebraic neural
networks to small perturbations,” in ICASSP 2021 - 2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021, pp. 5205–5209.

[6] A. Parada-Mayorga, L. Butler, and A. Ribeiro, “Convolutional filtering
and neural networks with non commutative algebras,” arXiv preprint
arXiv:2108.09923, 2021.

[7] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional
neural network architectures for signals supported on graphs,” IEEE
Transactions on Signal Processing, vol. 67, no. 4, pp. 1034–1049, 2019.

[8] Z. Wang, M. Eisen, and A. Ribeiro, “Learning decentralized wireless
resource allocations with graph neural networks,” IEEE Transactions on
Signal Processing, vol. 70, pp. 1850–1863, 2022.

[9] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro,
“Learning decentralized controllers for robot swarms with graph neural
networks,” in Conf. Robot Learning 2019, vol. 100. Osaka, Japan: Proc.
Mach. Learning Res., 30 Oct.-1 Nov. 2019, pp. 671–682.

[10] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and appli-
cations,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[11] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Transactions on Signal Processing, vol. 61, pp. 1644–
1656, 2013.

[12] A. Parada-Mayorga, L. Ruiz, and A. Ribeiro, “Graphon pooling in graph
neural networks,” 2020 28th European Signal Processing Conference
(EUSIPCO), pp. 860–864, 2021.

[13] A. Parada-Mayorga, Z. Wang, and A. Ribeiro, “Graphon pooling for re-
ducing dimensionality of signals and convolutional operators on graphs,”
arXiv preprint arXiv:2212.08171, 2022.

[14] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph
signals with successive local aggregations,” IEEE Transactions on Signal
Processing, vol. 64, no. 7, pp. 1832–1843, 2016.

[15] T. Wiatowski and H. Bölcskei, “A mathematical theory of deep convo-
lutional neural networks for feature extraction,” IEEE Transactions on
Information Theory, vol. 64, no. 3, pp. 1845–1866, 2018.

[16] D. Zou and G. Lerman, “Graph convolutional neural networks via
scattering,” ArXiv, vol. abs/1804.00099, 2018.

[17] H. Kenlay, D. Thanou, and X. Dong, “On the stability of graph
convolutional neural networks under edge rewiring,” ICASSP 2021 -
2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8513–8517, 2021.

[18] R. Levie, E. Isufi, and G. Kutyniok, “On the transferability of spectral
graph filters,” 2019 13th International conference on Sampling Theory
and Applications (SampTA), pp. 1–5, 2019.

[19] L. Butler, A. Parada-Mayorga, and A. Ribeiro, “Convolutional learning
on multigraphs,” arXiv preprint arXiv:2209.11354, 2022.

[20] L. Butler, A. Parada-Mayorga, and A. Ribeiro, “Learning with multi-
graph convolutional filters,” arXiv preprint arXiv:2210.16272, 2022.

[21] P. W. Michor and D. Mumford, “A zoo of diffeomorphism groups on
Rn,” Annals of Global Analysis and Geometry, vol. 44, pp. 529–540,
2012.

[22] J. A. Leslie, “On a differential structure for the group of diffeomor-
phisms,” Topology, vol. 6, pp. 263–271, 1967.

[23] M. Hirsch, Differential Topology, ser. Graduate Texts in Mathematics.
Springer New York, 2012. [Online]. Available: https://books.google.
com/books?id=emTmBwAAQBAJ

[24] N. Higham, Functions of Matrices: Theory and Computation, ser. Other
Titles in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA
19104), 2008. [Online]. Available: https://books.google.com/books?id=
S6gpNn1JmbgC

[25] W. Huang, A. G. Marques, and A. R. Ribeiro, “Rating prediction
via graph signal processing,” IEEE Transactions on Signal Processing,
vol. 66, no. 19, pp. 5066–5081, 2018.

[26] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” Acm transactions on interactive intelligent systems (tiis), vol. 5,
no. 4, pp. 1–19, 2015.

[27] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions, and
neural networks: From graph filters to graph neural networks,” IEEE
Signal Process. Mag., vol. 37, no. 6, pp. 128–138, Nov. 2020.

[28] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional
Analysis, ser. American Mathematical Society colloquium publications.
American Mathematical Society, 2000, no. v. 48, no. 1. [Online].
Available: https://books.google.com/books?id=8SjiDgAAQBAJ

[29] J. Lindenstrauss, D. Preiss, and J. Tišer, Frechet Differentiability of
Lipschitz Functions and Porous Sets in Banach Spaces, ser. Annals
of Mathematics Studies. Princeton University Press, 2012. [Online].
Available: https://books.google.com/books?id=TOClhEPTmPEC

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21413
https://books.google.com/books?id=emTmBwAAQBAJ
https://books.google.com/books?id=emTmBwAAQBAJ
https://books.google.com/books?id=S6gpNn1JmbgC
https://books.google.com/books?id=S6gpNn1JmbgC
https://books.google.com/books?id=8SjiDgAAQBAJ
https://books.google.com/books?id=TOClhEPTmPEC

	Introduction
	Aggregation GNNs
	 Aggregation Stage and the Aggregation Operator
	CNN stage
	Notation and conventions for Agg-GNNs
	Application scenarios of Agg-GNNs

	Stability of Aggregation GNNs
	Perturbations
	The Notion of Stability
	Stability theorems
	Stability of Aggregation Graph Neural Networks
	Observations about the Stability Constants
	Sketch of the proofs
	Comparison with the Stability Results for Selection GNNs
	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Numerical Experiments
	Movie Recommendation
	Wireless Resource Allocation

	Discussion and Conclusions
	Appendix A: Auxiliary Results
	Preliminary results
	Proof of Corollary 1

	References

