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ABSTRACT

The increasing availability of geometric data has motivated the need
for information processing over non-Euclidean domains modeled as
manifolds. The building block for information processing architec-
tures with desirable theoretical properties such as invariance and sta-
bility is convolutional filtering. Manifold convolutional filters are de-
fined from the manifold diffusion sequence, constructed by succes-
sive applications of the Laplace-Beltrami operator to manifold sig-
nals. However, the continuous manifold model can only be accessed
by sampling discrete points and building an approximate graph model
from the sampled manifold. Effective linear information process-
ing on the manifold requires quantifying the error incurred when ap-
proximating manifold convolutions with graph convolutions. In this
paper, we derive a non-asymptotic error bound for this approxima-
tion, showing that convolutional filtering on the sampled manifold
converges to continuous manifold filtering. Our findings are further
demonstrated empirically on a problem of navigation control.

Index Terms— Manifold filter, manifold signal processing,
Laplace-Beltrami operator, graph Laplacian

1. INTRODUCTION

Applications involving structured data in non-Euclidean domains are
attracting more and more attention these days, including but not lim-
ited to robot coordination [1, 2], resource allocation over wireless
networks [3] and 3D shape analysis [4, 5]. Graph convolutional fil-
tering [6, 7] and manifold convolutional filtering [8, 9] have become
the top choices to process information over these non-Euclidean do-
mains. This can be attributed to the fact that the convolution opera-
tion consists of local diffusions over the geometric structure, which
capture features that are shared across the whole domain. Moreover,
convolutional filtering provides the fundamental block for construct-
ing deep learning architectures, which are powerful models [10] to
solve a wide range of geometric problems.

Unlike graphs, which are discrete objects, manifolds are not di-
rectly accessible in general because they are infinite-dimensional con-
tinuous spaces [4, 8]. Instead, we typically have access to a set of
points sampled from the manifold, or a sampled manifold. In many
manifold problems, a graph capturing both the local and global con-
nection structure is built from this sampled manifold to approximate
the underlying continuous manifold [3, 11] (herein, we use the terms
sampled manifold and graph interchangeably). Convolutional filters
constructed on graphs have been used to approximately process in-
formation over the manifold, which has been supported both exper-
imentally and theoretically [8, 10, 12]. However, an explicit non-
asymptotic theoretical result closing the gap between graph convo-
lutional filtering and manifold convolutional filtering is still lacking.
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Contributions. In this paper, we define manifold filtering as a convo-
lutional operation based on diffusions that are defined as exponentials
of the Laplace-Beltrami (LB) operator L of the embedded manifold
M ⊂ RN [8]. Graphs are constructed by sampling a set of points uni-
formly over the manifold, with edge weights given by application of
a Gaussian kernel. Denoting the graph Laplacian Lϵ

n, we derive up-
per bounds for both the operator norm difference and the difference
between the spectra of the graph Laplacian Lϵ

n and the LB operator
L. Then, to deal with the infinite dimensional spectrum and the sharp
variations in the high frequency domain of LB operator L, we import
the definition of the Frequency Difference Threshold (FDT) filters
(Definition 2) [13] to separate the spectrum into finite eigenvalue par-
titions. Finally, we show that when applying FDT filters to graphs
sampled from the manifold, graph filtering converges to the manifold
filtering with a non-asymptotic approximation bound in the order of
n−1/(2d+8) (Theorem 3).
Related Works. Graph convolutional filtering has been thoroughly
discussed in previous works [6,7,14]. A large number of works have
studied the convergence of graph filters, such as [15] and [16] which
consider graphs that are dense or relatively sparse, and which are both
sampled from a graphon model. Unlike the graphon, the manifold is
more realistic and can be seen as a limit for graphs that have finite
degree [17]. Convolutional filtering in manifolds has been discussed
in [8, 9, 12], with different definitions depending on how the graphs
are sampled from manifolds. The connection between graph filter-
ing and manifold filtering has been discussed in [8]. In this paper,
it is proved that manifold filtering can recover graph filtering by dis-
cretization in both the space and time domains; and that filtering on
graphs sampled from the manifold converges to manifold filtering.
However, there are no theoretical convergence rates. In the present
paper, we extend upon the results of [8] by proving a non-asymptotic
approximation bound for graph filters sampled from manifold filters.

2. PRELIMINARY DEFINITIONS

In order to relate graph filters and manifold filters, we start by re-
viewing the basic setup as well as the graph signal processing and
manifold signal processing frameworks.

2.1. Graph signal processing: graph filters

We consider an undirected graph G = (V, E ,W) with V, |V| = n,
representing the set of nodes and E ⊆ V × V the set of edges. The
weight function W : E → R assigns weights to the edges. Graph
signals x ∈ Rn are defined as data supported on the graph, with the
i-th element xi representing the datum at node i [6, 14].

The so-called graph shift operator (GSO) S ∈ Rn×n is typically
selected to be the Laplacian matrix, the normalized Laplacian or the
adjacency matrix, which encodes the graph sparsity pattern. The ap-



plication of the GSO to a graph signal leads to a diffusion of the data
over the edges. Specifically, for each node i, the GSO diffuses the
signals on the neighboring nodes xj scaled with the proximity mea-
sure [S]ij to this node i. I.e. [Sx]i =

∑
j,(i,j)∈E [S]ijxj . Based on

this notion of diffusion, we can then define graph convolutional filters
as a shift-and-sum operation

hG(S)x =

K−1∑
k=0

hkS
kx, (1)

where {hk}K−1
k=0 are the filter coefficients [6, 7].

For an undirected graph G, the GSO is symmetric and thus can
be diagonalized as S = VΛVH , with Λ containing the graph eigen-
values and V the graph eigenvectors. By replacing the GSO by its
eigendecomposition, we can thus write the spectral representation of
the graph convolution as

VHhG(S)x =

K−1∑
k=1

hkΛ
kVHx = h(Λ)VHx. (2)

The frequency response of graph convolution can therefore be written
as h(λ) =

∑K−1
k=0 hkλ

k, which only depends on the coefficients hk

and the eigenvalues of S.

2.2. Manifold signal processing: manifold filters

We consider a compact smooth differentiable d-dimensional subman-
ifold M embedded in some Euclidean space RN, and a measure µ
over the manifold M. Manifold signals are defined as scalar func-
tions f : M → R supported on M. The inner product of functions
f, g ∈ L2(M) can be defined as

⟨f, g⟩L2(M) =

∫
M

f(x)g(x)dµ(x) (3)

with dµ(x) representing the volume element with respect to measure
µ. Therefore, the energy of manifold signal f is naturally given as
∥f∥2L2(M) = ⟨f, f⟩L2(M). We consider manifold signals with finite
energy, i.e., f ∈ L2(M).

The manifold is locally Euclidean and the local homeomorphic
Euclidean space around each point x ∈ M is defined as the tan-
gent space TxM. The disjoint union of all tangent spaces over M
is denoted TM. The intrinsic gradient ∇ : L2(M) → L2(TM)
is the differentiation operator and maps scalar functions to tangent
vector functions over M [10]. The adjoint of ∇ is the intrinsic diver-
gence, which is defined as div : L2(TM) → L2(M). The Laplace-
Beltrami (LB) operator L : L2(M) → L2(M) can be defined as the
intrinsic divergence of the intrinsic gradient [18]. More formally,

Lf = −div ◦ ∇f. (4)

The LB operator measures the difference between the function value
at a point and the average function value over the point’s neighbor-
hood [10], similar to graph Laplacian matrix.

The manifold convolution of h̃ : R+ → R and the manifold sig-
nal f ∈ L2(M) is called a manifold filter with impulse response h̃,
and is defined by leveraging the heat diffusion dynamics [8]. Explic-
itly, this filter, denoted h, is given by

g(x) = (hf)(x) :=

∫ ∞

0

h̃(t)e−tLf(x)dt = h(L)f(x). (5)

This is a spatial manifold convolution operator because it is parametrized
by the operator L and directly operates on points x ∈ M.

The LB operator L is self-adjoint and positive-semidefinite.
These facts, together with the compactness of M, imply that L
has a real, positive and discrete eigenvalue spectrum {λi}∞i=1 such
that Lϕi = λiϕi, where ϕi is the eigenfunction associated with
eigenvalue λi. The eigenvalues are ordered in increasing order as
0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .. The eigenfunctions are orthonormal and
thus form an eigenbasis of L2(M) in the intrinsic sense.

Denoting [f̂ ]i = ⟨f,ϕi⟩L2(M) =
∫
M f(x)ϕi(x)dµ(x) and

e−tLϕi = e−tλiϕi, the manifold convolution can be represented
in the manifold frequency domain as

[ĝ]i =

∫ ∞

0

h̃(t)e−tλidt[f̂ ]i. (6)

Hence, the frequency response of the filter h(L) is given by ĥ(λ) =∫∞
0

h̃(t)e−tλdt, which depends only on the function h̃ and on the
eigenvalues of the LB operator. Summing over all i, we thus get

g = h(L)f =

∞∑
i=1

ĥ(λi)[f̂ ]iϕi. (7)

3. CONVERGENCE OF FILTERING ON SAMPLED
MANIFOLDS

Our goal is to derive a non-asymptotic approximation bound for man-
ifold filtering on sampled manifolds, providing theoretical guarantees
when the sampled manifold is modeled as a graph and showing that
graph filtering can be used to approximate manifold filtering. We start
by constructing the graph corresponding to the sampled manifold.

3.1. Sampled manifolds as graphs

Let X = {x1, x2, . . . xn} be a set of n points sampled uniformly
and independently at random from the d-dimensional manifold M
according to measure µ. The empirical measure associated with dµ
is pn = 1

n

∑n
i=1 δxi , where δxi is the Dirac measure supported on

xi. Similar to the definition of inner product in L2(M) (3), the inner
product in L2(Gn) is defined as

⟨u, v⟩L2(Gn) =

∫
u(x)v(x)dpn =

1

n

n∑
i=1

u(xi)v(xi). (8)

The norm in L2(Gn) with measure pn is therefore

∥u∥2L2(Gn) = ⟨u, u⟩L2(Gn)

for u, v ∈ L2(M). For signals u,v ∈ L2(Gn), the inner product is

⟨u,v⟩L2(Gn) =
1

n

n∑
i=1

[u]i[v]i.

From X , we construct an undirected graph Gn by seeing the
sampled points as nodes. The weights of the edges connecting nodes
xi and xj are determined by

wij =
1

n

1

ϵ(4πϵ)d/2
exp

(
−∥xi − xj∥2

4ϵ

)
, (9)

where ∥xi −xj∥ stands for the Euclidean distance between points xi

and xj and ϵ is a parameter related to the Gaussian kernel [19]. The
adjacency matrix An ∈ Rn×n can be written as [An]ij = wij for



1 ≤ i, j ≤ n. Thus, the graph Laplacian associated with this graph
can be written as

Lϵ
n = diag(An1)−An

with [Lϵ
n]ij = −wij if i ̸= j and [Lϵ

n]ii =
∑n

k=1 wik [20].
To discretize manifold signals f ∈ L2(M) on the sampled

manifold, we define a uniform sampling operator Pn : L2(M) →
L2(Gn) yielding signals f ∈ L2(Gn) defined explicitly as

f = Pnf with f(xi) = f(xi), xi ∈ X. (10)

This indicates that f shares the function values of the manifold signal
f at the sample points X . Seeing the graph Laplacian as an operator
acting on f : X → R, we can write the diffusion operation on each
point x explicitly as

Lϵ
nf(xi) =

n∑
j=1

wij (f(xi)− f(xj)) , i = 1, 2, . . . n. (11)

It can be seen that this formulation can extend to a continuous mani-
fold signal f , which we denote as

Lϵ
nf(x) =

1

n

1

ϵ(4πϵ)d/2

n∑
j=1

(f(x)− f(xj)) e
−

∥x−xj∥
2

4ϵ , x ∈ M.

(12)
If we further extend the set of sample points from X to all the points
on the manifold, we finally get the functional approximation of the
graph Laplacian,

Lϵf(x) =
1

n

1

ϵ(4πϵ)d/2

∫
M

(f(x)− f(y)) e−
∥x−y∥2

4ϵ dµ(y), (13)

which operates on all x ∈ M.

3.2. Graph Laplacian approximation of the LB operator

We first demonstrate the consistency of the discrete graph Laplacians
defined in (12) when operating on the eigenfunctions ϕi ∈ L2(M)
of the LB operator L. The quality of the approximation given by the
discrete Laplace operator on the sampled manifold is quantified by
the following non-asymptotic result.

Theorem 1. Let M ⊂ RN be a compact smooth differentiable d-
dimensional manifold with LB operator L, whose spectrum is given
by {λi,ϕi}∞i=1, and assume ϕi ∈ C(M). Let Gn be the discrete
graph connecting points {x1, x2, . . . , xn} sampled uniformly and in-
dependently at random from M, with edge weights as in (9) and
ϵ = ϵ(n) > n−1/(d+4). Then, it holds

|Lϵ
nϕi(x)− Lϕi(x)| ≤

(
C1

√
ln(1/δ)

2n
+ C2

√
ϵ

)
λ

d+2
4

i , (14)

with probability at least 1 − δ. The constants C1, C2 depend on the
volume of the manifold.

Proof. See Appendix A.1.

This theorem provides a point-wise upper bound for the error in-
curred when using the discrete graph Laplacian to approximate the
LB operator operating on the eigenfunctions of L. We can see that
this bound is not only related to the number of sampling points n,
but also grows with the corresponding eigenvalue λi. This makes
sense considering that higher eigenvalues correspond to eigenfunc-
tions with high oscillation [21].

Based on this approximation result, we can further derive a non-
asymptotic approximation bound relating the spectra of the graph
Laplacian and the LB operator using the Davis-Khan theorem [22].
This result, stated in Theorem 2, will allows us to analyze the approx-
imation of a manifold filter by a graph filter through their spectral
representations.

Theorem 2. Let M ⊂ RN be a compact smooth differentiable d-
dimensional manifold with LB operator L whose spectrum is given
by {λi,ϕi}∞i=1. Let Lϵ

n be a discrete graph Laplacian defined as in
(12) with {x1, x2, . . . , xn} sampled uniformly and independently at
random from M whose spectrum is given by {λϵ

i,n,ϕ
ϵ
i,n}ni=1. Fix

K ∈ N and asumme that n is sufficiently large so that ϵ = ϵ(n) >

n−1/(d+4). Then, with probability at least 1− 2e−n, we have

|λi − λϵ
i,n| ≤ Ω1

√
ϵ, ∥aiϕ

ϵ
i,n − ϕi∥ ≤ Ω2

√
ϵ, (15)

with ai = {−1, 1} for all i < K. The constants Ω1, Ω2 depend on
λK , the eigengap of L i.e., θ = min1≤i≤K{λi − λi−1, λi+1 − λi},
d and the volume of M.

Proof. See Appendix A.2.

3.3. Graph filtering approximation of manifold filtering

Equipped with theoretical approximation results for both the eigen-
values and eigenfunctions of the Laplacian operators, we can now
prove that graph filters can approximate manifold filters well in the
spectral domain. We first show that we can generalize the definition
of manifold convolutional filters to sampled manifolds using the same
impulse response h̃.

From the definition in (5), recall that the manifold filter is para-
metric on the LB operator when the impulse response h̃(t) is fixed.
By replacing the LB operator with the discrete graph Laplacian de-
fined in (12), we can then obtain a graph convolutional filter

g =

∫ ∞

0

h̃(t)e−tLϵ
n fdt = h(Lϵ

n)f , g, f ∈ Rn. (16)

This can be seen as a continuous-time graph filtering process, differ-
ent from the discrete-time graph filtering process hG in (1), where
the exponential term e−Lϵ

n can be seen as the graph shift operator.
The frequency representation of this graph filter can be written as

g =

n∑
i=1

ĥ(λϵ
i,n)⟨f ,ϕϵ

i,n⟩L2(Gn)ϕ
ϵ
i,n, (17)

which reveals the full dependency on the eigendecomposition of Lϵ
n.

Thus, we can relate graph filtering and manifold filtering using the
spectral approximation results for the graph Laplacian and LB oper-
ator presented in Theorem 2.

Unlike the finite spectrum of the graph Laplacian, the LB oper-
ator L possesses an infinite spectrum. We consider Weyl’s law [23]
when analyzing the spectral properties of L. This classical result
states that the eigenvalues λi of L grow in the order of i2/d. There-
fore, the difference between neighboring eigenvalues becomes quite
small in the high frequency spectrum, i.e., large eigenvalues accumu-
late. Leveraging this fact, we can use a partition strategy to separate
the spectrum into finite groups as in Definition 1.

Definition 1. [13] (α-separated spectrum) The α-separated spectrum
of LB operator L is defined as the partition Λ1(α)∪. . .∪ΛN (α) such
that λi ∈ Λk(α) and λj ∈ Λl(α), k ̸= l, satisfying |λi − λj | > α.

The following defined α-FDT filter allows obtaining the α-
separated spectrum as in Definition 1.



Definition 2. [13] (α-FDT filter) The α-frequency difference thresh-
old (α-FDT) filter is defined as a filter h(L) whose frequency re-
sponse satisfies

|ĥ(λi)− ĥ(λj)| ≤ γk for all λi, λj ∈ Λk(α) (18)

with γk ≤ γ for k = 1, . . . , N .

To derive an approximation bound, we will also need the mani-
fold filter to have a Lipschitz frequency response as in Definition 3.

Definition 3 (Lipschitz filter). A filter is Ah-Lispchitz if its fre-
quency response is Lipschitz continuous with Lipschitz constant Ah,

|ĥ(a)− ĥ(b)| ≤ Ah|a− b| for all a, b ∈ (0,∞). (19)

Equipped with the above requirements for the filter frequency
response, we can finally establish the upper bound on the manifold
filter approximation error on the sampled manifold.

Theorem 3. Let X = {x1, x2, ...xn} be a set of n points sampled
by an operator Pn (10) from a d-dimensional manifold M ⊂ RN .
Let Gn be a discrete graph approximation of M constructed from X
with weight values as in (9) with ϵ = ϵ(n) ≥ n−1/(d+4). Let h(·)
be the convolutional filter parameterized by the LB operator L of the
manifold M (5) or by the discrete graph Laplacian operator Lϵ

n of
the graph Gn. Under the assumption that the frequency response of
filter h is Lipschitz continuous and α-FDT with α2 ≫ ϵ and γ =
Ω′

2

√
ϵ/α, with probability at least 1− 2n−2 it holds that

∥h(Lϵ
n)Pnf −Pnh(L)f∥L2(Gn)

≤
(
NΩ′

2

α
+AhΩ1

)√
ϵ+ Cgc

√
logn

n
(20)

where N is the partition size of α-FDT filter and Cgc is related with
d and the volume of M.

Proof. See Appendix A.3.

From this theorem, we see that if we take ϵ = n−1/(d+4), the dif-
ference between filtering on the manifold and the sampled manifold
is in the order of O(n−1/(2d+8)). Thus, with a large enough num-
ber of sampling points, this approximation provides a good accuracy
with high probability. This provides a formal theoretical guarantee
for the ability of graph filters to approximate manifold filters on sam-
pled manifolds, enabling approximate linear information processing
on continuous non-Euclidean domains.

4. NUMERICAL EXPERIMENTS

We consider a problem of automatic navigation control of an agent
[24]. We intend to control an agent to find a path to the goal with-
out colliding to obstacles. We sample grid points over the free space
which means avoiding the obstacle areas to construct a graph struc-
ture. We generate four trajectories with Dijkstra’s shortest path al-
gorithm leading a starting point to the goal. Each point along the
trajectory is labeled with the direction of the velocity. The adjacency
matrix can be calculated based on the weight value defined in (9) with
the Euclidean distance between each two points. We note that if the
direct path between two points goes through the obstacles, we set the
distance between them as infinity, i.e. the weight value as zero, so
as to better capture the geometric structure. The input graph signal is
the position of the nodes and the output of the graph filter is the di-
rection of this node leading to the goal. We construct a one-layer and
two-layer graph filters with 5 filter taps in each layer. We train all the
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Fig. 1: Graph filtering performance with n = 413
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Fig. 2: Graph filtering performance with n = 1117

architectures for 30, 000 epochs with SGD optimizer with the learn-
ing rate set as 0.0002. The performance of the learned graph filter is
testified by randomly generating 100 starting points and computing
the trajectories. If the trajectory can reach the goal without colliding
into the obstacles, the trajectory is marked as “success”.

We first sample n points uniformly over the free space avoid-
ing the black obstacles as shown in Fig. 1a (n = 413) and Fig. 2a
(n = 1117). In Fig. 1a and Fig. 2a, the red stars depicting labeled
points as training dataset and the blue arrows attached to the red stars
point to the optimal directions leading to the goal. The blue stars de-
pict unlabeled points over the free space. We implement a 1-layer or
2-layer graph filters to learn and estimate the directions for all the un-
labeled points. Figure 1b and 2b show the learned directions starting
from each unlabeled points as the red arrows show using graph fil-
tering. The numbers of successful trajectories within 100 generated
testing are shown in Table 1. We can see that graph filtering can effi-
ciently learn the potential successful trajectories for unlabeled points
based on these sampled manifolds. More sampling points character-
ize the free space more accurately, which leads to more successful
testing trajectories. This is also in accordance with our theoretical
result presented in Theorem 3. Moreover, more layers of filters also
learn a more accurate prediction.

n = 413 n = 1117
1-layer graph filter 74 75
2-layer graph filter 79 84

Table 1: Number of successful trajectories.

5. CONCLUSIONS

In this paper, we introduced manifold convolutional filters defined
with the exponential Laplace-Beltrami operator to process geometric
data. To access the manifold model, we sample uniformly over the



manifold and construct a graph model as a sampled manifold. We
first prove the non-asymptotic approximation error bound of discrete
graph Laplacian to LB operator in both operator and spectral aspects.
By transferring the manifold filtering to the sampled manifold, the
approximation of the graph filtering to the manifold filtering can be
derived. The non-asymptotic error bound decreases with the number
of sampling points growing. The approximation of graph filtering is
verified empirically on a navigation control problem over a manifold.
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A. APPENDIX

A.1. Proof of Theorem 1

We decompose the operator difference between the graph Laplacian
and the LB operator with an intermediate term Lϵ, which is the func-
tional approximation defined in (13). We first focus on the operator



difference between Lϵ and L. From [19], we can get the bound as

∥Lϵϕi − Lϕi∥ ≤ C
√
ϵ∥ϕi∥Hd/2+1 , (21)

For the Sobolev norm of eigenfunction ϕi, according to [25, Lemma 4.4]
we have

∥ϕi∥Hd/2+1 ≤ Cλ
d+2
4

i , (22)

which leads to

∥Lϵϕi − Lϕi∥ ≤ C1

√
ϵλ

d+2
4

i . (23)

For the operator difference between Lϵ
n and Lϵ with Hoeffding’s in-

equality as

P (|Lϵ
nϕi(x)− Lϵϕi(x)| > ϵ1) ≤ exp

(
− 2nϵ21
∥ϕi∥2

Hd/2+1

)
. (24)

Therefore, we can claim that with probability at least 1− δ, we have

|Lϵ
nϕi(x)− Lϵϕi(x)| ≤

√
ln 1/δ

2n
∥ϕi∥Hd/2+1 . (25)

Combining (23) and (25) with triangle inequality, we can get the con-
clusion in Theorem 1.

A.2. Proof of Theorem 2

We first import two lemmas to help prove the spectral properties.

Lemma 1. Let A,B be self-adjoint operators with {λi(A),ui}∞i=1

and {λi(B),wi}∞i=1 as the corresponding spectrum. Let Prwi be
the orthogonal projection operation onto the subspace generated by
wi. Then we have

∥aiui −wi∥ ≤ 2∥ui − Prwiui∥ ≤ 2∥Bui −Aui∥
minj ̸=i |λj(B)− λi(A)| .

(26)

Proof. The first inequality is directly from [26, Proposition 18]. Let
Pr⊥wi

be the orthogonal projection onto the complement of the sub-
space generated by wi. Then we have

∥ui − Prwiui∥ = ∥Pr⊥wi
ui∥ =

∥∥∥∑
j ̸=i

⟨ui,wj⟩wj

∥∥∥. (27)

Therefore, we have

∥Pr⊥wi
Bui − Pr⊥wi

Aui∥

=
∥∥∥∑

j ̸=i

⟨Bui,wj⟩wj −
∑
j ̸=i

⟨Aui,wj⟩wj

∥∥∥ (28)

=
∥∥∥⟨ui,Bwj⟩wj −

∑
j ̸=i

λi(A)⟨ui,wj⟩wj

∥∥∥ (29)

=
∥∥∥∑

j ̸=i

(λi(B)− λi(A))⟨ui,wj⟩wj

∥∥∥ (30)

≥ min
j ̸=i

|λi(B)− λi(A)|∥
∑
j ̸=i

⟨ui,wj⟩wj∥ (31)

= min
j ̸=i

|λi(B)− λi(A)|∥ui − Prwiui∥, (32)

together with ∥Bui −Aui∥ ≥ ∥Pr⊥wi
Bui − Pr⊥wi

Aui∥. We can
conclude the proof.

The following lemma is adapted from [27, Lemma 5c]

Lemma 2. Let A,B be self-adjoint operators with {λi(A),ui}∞i=1

and {λi(B),wi}∞i=1 as the corresponding spectrum. Then we have

|λi(A)− λi(B)| = ⟨(A−B)ui,wi⟩
|⟨ui,wi⟩|

≤ ∥(A−B)ui∥
|⟨ui,wi⟩|

(33)

With the above lemmas and our proposed Theorem 1, which in-
cludes the operator difference, we can prove Theorem 2. We first fix
some K ∈ N, wich provides an upper bound for λi ≤ λK for all
1 ≤ i ≤ K. By taking the probability 1 − n−2 and ϵ = n−1/(d+4),
we can conclude that the operator difference in Theorem 1 can be

bounded with order O(
√
ϵ), with the constant scaling with λ

d+2
4

K .
Combine with Lemma 1 and theta = min1≤j ̸=i≤K |λj − λϵ

i,n|, we
can get

∥aiϕ
ϵ
i,n − ϕi∥ ≤ Ck

θ

√
ϵ, (34)

where we denote the constant as Ω1 to include the effects of K, the
eigengap and the volume of M.

This upper bound of the eigenfunction difference leads to
|⟨ui,wi⟩| ≥ 1 − Ω1/2

√
ϵ ≥ 1. Combining with Lemma 2, the

difference of the eigenvalues can also be bounded in the order of
O(

√
ϵ).

A.3. Proof of Theorem 3

We first write out the filter representation as

∥h(Lϵ
n)Pnf −Pnh(L)f∥

≤

∥∥∥∥∥
∞∑
i=1

ĥ(λϵ
i,n)⟨Pnf,ϕ

ϵ
i,n⟩Gnϕ

n
i −

∞∑
i=1

ĥ(λi)⟨f,ϕi⟩MPnϕi

∥∥∥∥∥
(35)

We decompose the α-FDT filter function as ĥ(λ) = h(0)(λ) +∑
l∈Km

h(l)(λ) as

h(0)(λ) =

{
ĥ(λ)−

∑
l∈Km

ĥ(Cl) λ ∈ [Λk(α)]k∈Ks

0 otherwise
(36)

h(l)(λ) =

 ĥ(Cl) λ ∈ [Λk(α)]k∈Ks

ĥ(λ) λ ∈ Λl(α)
0 otherwise

(37)

With the triangle inequality, we start by analyzing the output dif-
ference of h(0)(λ) as∥∥∥∥∥

Ns∑
i=1

h(0)(λn
i )⟨Pnf,ϕ

n
i ⟩Gnϕ

n
i −

Ns∑
i=1

h(0)(λi)⟨f,ϕi⟩MPnϕi

∥∥∥∥∥
≤

∥∥∥∥∥
Ns∑
i=1

(
h(0)(λn

i )− h(0)(λi)
)
⟨Pnf,ϕ

n
i ⟩Gnϕ

n
i

∥∥∥∥∥
+

∥∥∥∥∥
Ns∑
i=1

h(0)(λi) (⟨Pnf,ϕ
n
i ⟩Gnϕ

n
i − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥ . (38)

The first term in (38) can be bounded by leveraging the Ah-
Lipschitz continuity of the frequency response. From the eigenvalue
difference in Theorem 2, we can claim that for each eigenvalue λi ≤
λK , we have

|λϵ
i,n − λi| ≤ Ω1

√
ϵ. (39)



The first term is bounded as∥∥∥∥∥
Ns∑
i=1

(h(0)(λn
i )− h(0)(λi))⟨Pnf,ϕ

n
i ⟩Gnϕ

n
i

∥∥∥∥∥
≤

Ns∑
i=1

|h(0)(λn
i )− h(0)(λi)||⟨Pnf,ϕ

n
i ⟩Gn |∥ϕ

n
i ∥ (40)

≤
Ns∑
i=1

Ah|λn
i − λi|∥Pnf∥∥ϕn

i ∥2 ≤ NsAhΩ1

√
ϵ. (41)

The second term in (38) can be bounded combined with the con-
vergence of eigenfunctions in (43) as∥∥∥∥∥

Ns∑
i=1

h(0)(λi) (⟨Pnf,ϕ
n
i ⟩Gnϕ

n
i − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥
≤

∥∥∥∥∥
Ns∑
i=1

h(0)(λi) (⟨Pnf,ϕ
n
i ⟩Gnϕ

n
i − ⟨Pnf,ϕ

n
i ⟩GnPnϕi)

∥∥∥∥∥
+

∥∥∥∥∥
Ns∑
i=1

h(0)(λi) (⟨Pnf,ϕ
n
i ⟩GnPnϕi − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥ (42)

From the convergence stated in Theorem 2, we have

∥aiϕ
ϵ
i,n − ϕi∥ ≤ Ω2

√
ϵ, (43)

Therefore, the first term in (42) can be bounded as∥∥∥∥∥
Ns∑
i=1

h(0)(λi) (⟨Pnf,ϕ
n
i ⟩Gnϕ

n
i − ⟨Pnf,ϕ

n
i ⟩MPnϕi)

∥∥∥∥∥
≤

Ns∑
i=1

∥Pnf∥∥ϕn
i −Pnϕi∥ ≤ NsΩ2

√
ϵ. (44)

The last equation comes from the definition of norm in L2(Gn). The
second term in (42) can be written as∥∥∥∥∥

Ns∑
i=1

h(0)(λn
i )(⟨Pnf,ϕ

n
i ⟩GnPnϕi − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥
≤

Ns∑
i=1

|h(0)(λn
i )| |⟨Pnf,ϕ

n
i ⟩Gn − ⟨f,ϕi⟩M| ∥Pnϕi∥. (45)

Because {x1, x2, · · · , xn} is a set of uniform sampled points from
M, based on Theorem 19 in [26] we can claim that

|⟨Pnf,ϕ
n
i ⟩Gn − ⟨f,ϕi⟩M| = O

(√
logn

n

)
. (46)

Taking into consider the boundedness of frequency response |h(0)(λ)| ≤
1 and the bounded energy ∥Pnϕi∥. Therefore, we have∥∥∥∥∥

Ns∑
i=1

ĥ(λn
i ) (⟨Pnf,ϕ

n
i ⟩Gn − ⟨f,ϕi⟩M)Pnϕi

∥∥∥∥∥ = O

(√
logn

n

)
.

Combining the above results, we can bound the output difference
of h(0). Then we need to analyze the output difference of h(l)(λ) and
bound this as∥∥∥Pnh

(l)(L)f − h(l)(Ln)Pnf
∥∥∥

≤
∥∥∥(ĥ(Cl) + δ)Pnf − (ĥ(Cl)− δ)Pnf

∥∥∥ ≤ 2δ∥Pnf∥, (47)

where h(l)(L) and h(l)(Ln) are filters with filter function h(l)(λ) on
the LB operator L and graph Laplacian Ln respectively. Combining
the filter functions, we can write

∥Pnh(L)f − h(Ln)Pnf∥

=

∥∥∥∥∥Pnh
(0)(L)f +Pn

∑
l∈Km

h(l)(L)f−

h(0)(Ln)Pnf −
∑

l∈Km

h(l)(Ln)Pf

∥∥∥∥∥ (48)

≤ ∥Pnh
(0)(L)f − h(0)(Ln)Pnf∥+∑

l∈Km

∥Pnh
(l)(L)f − h(l)(Ln)Pnf∥. (49)

Above all, we can claim that

∥h(Ln)Pnf −Pnh(L)f∥ ≤ (NΩ2 +AhΩ1)
√
ϵ+ C

√
logn

n
(50)


