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ABSTRACT
We consider the problem of resource allocation in large scale
wireless networks. When contextualizing wireless network
structures as graphs, we can model the limits of very large
wireless systems as manifolds. To solve the problem in the
machine learning framework, we propose the use of Manifold
Neural Networks (MNNs) as a policy parametrization. In this
work, we prove the stability of MNN resource allocation poli-
cies under the absolute perturbations to the Laplace-Beltrami
operator of the manifold, representing system noise and dy-
namics present in wireless systems. These results establish the
use of MNNs in achieving stable and transferable allocation
policies for large scale wireless networks. We verify our re-
sults in numerical simulations that show superior performance
relative to baseline methods.

Index Terms— Resource allocation, manifolds, stability
analysis, large scale wireless networks, deep learning

1. INTRODUCTION

With more devices and high-load applications deployed in
wireless systems, allocating resources that mitigate interfer-
ence and meet finite resource limitations across large networks
has become an increasingly difficult challenge. While the re-
source allocation problem can be easily formulated as an
optimization problem, due to non-convexity and large dimen-
sionality, the exact solution is often non-tractable. Traditional
heuristic methods have been used but require explicit model
knowledge and large computation cost. In light of these diffi-
culties, machine learning has become a valuable tool in tack-
ling large-scale wireless resource allocation problems [1–5].

Modern machine learning techniques often involve train-
ing neural networks as a parametrization of the resource allo-
cation policies. The specific parametric form imposed on the
policy plays an important role in both the performance and the
generalization. In particular, wireless systems require policies
that are stable to perturbations of the network states because
(i) channel measurements are often noisy due to environmen-
tal factors and (ii) wireless networks change frequently in re-
ality and it is impractical to retrain the neural network for each
configuration. Graph neural networks (GNNs) [6] have been
recently considered in many wireless resource allocation prob-
lems due to their low dimensionality and invariance to network
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topological structure [4, 5, 7, 8]. While prior numerical results
have been able to demonstrate transferability of GNN-based
resource allocation policies [4, 5], theoretical GNN stability
results fail to capture this property when the size of graph
is very large [9, 10]. Since our focus is on resource alloca-
tion problems over large-scale wireless networks, in this paper
we take a different approach by approximating very large net-
works by continuous manifolds and modeling resource alloca-
tion policies in these networks via Manifold Neural Networks
(MNNs) [11]. Then, we prove the stability of such policies to
formally establish their stability with respect to environmen-
tal/measurement noise, and demonstrate transferable perfor-
mance across wireless networks with different scales.

Specifically, wireless network interference patterns can be
modeled as discrete graphs with the edges representing the dy-
namic interference channel states. As the number of network
devices increases in the limit, the discrete graph can be repre-
sented as a continuous manifold structureM [12,13]. We then
consider the large scale resource allocation policy as process-
ing inputs over a manifold and subsequently propose the Mani-
fold Neural Network (MNN)—in effect representing GNNs on
large graphs—as a suitable parametrization model. By model-
ing the system noise and dynamic changes as a perturbation to
the Laplace-Beltrami operator of the underlying manifoldM,
we can analytically prove the stability of an MNN composed
of frequency difference threshold (FDT) filters to such system
perturbations. The learned MNN parametrization can more-
over be transferred to both similar manifolds and to finitely
sized graphs of increasing size [14]. These results demon-
strate the ability of MNNs to provide stable and transferable
resource allocation policies for large scale wireless networks.

The rest of this paper is organized as follows. We formu-
late resource allocation problems over large scale graphs and
manifolds (Section 2). We define MNNs as a parametrization
of such resource allocation policies (Section 2.1). In Section 3,
we prove stability of MNN policies to absolute perturbations.
In Section 4, we provide numerical analysis of GNNs in large
scale wireless networks to validate the stability properties of
MNNs and evaluate their transferability across networks.

2. OPTIMAL RESOURCE ALLOCATION

We consider a wireless network consisting of m pairs of
transmitters and receivers with each pair given a label i ∈
{1, 2, . . . ,m}. The channel link state can be characterized



by a matrix S ∈ Rm×m whose entries sij := [S]ij reflect
the fading state between pairs i and j. Note that the diagonal
entries sii reflect the direct channel between the transmitter
and receiver in pair i while off-diagonal entries sij reflect an
interference caused by transmitter i at receiver j. We further
consider the transmitter state x ∈ Rm with each entry [x]i
representing some state of transmitter i.

The goal in resource allocation problems is to determine
the optimal resource level pi for each transmitter i under
a given set of state observations (S,x). In particular, we
seek a mapping, or resource allocation policy, p(S,x) :=
[p1; p2; . . . ; pm]. For an instantaneous state and resource al-
location, each pair i experiences some level of performance
ri(p(S,x),S,x) (e.g. capacity, packet error rate). In fast-
fading environments, the channel and transmitter states vary
fast and randomly over time, and thus we optimize perfor-
mance over the long-term distribution of performance mea-
sures obtained by the policy p(S,x). Due to the challenges
inherent in optimizing an arbitrary function, the allocation
policy p(S,x) is typically restricted to a vector-valued func-
tion family φ(H,S,x) parameterized by some parameter set
H. The optimal resource allocation policy is then formalized
as determining the optimal policy parameter H∗ as

H∗ := argmax
H

ES,x

[
m∑
i=1

ri (φ(H,S,x),S,x)

]
, (1)

s.t. ES,x

[
m∑
i=1

φi(H,S,x)

]
≤ Pmax,

φi(H,S,x) ∈ {0, p0}, i = 1, ..,m.

The optimal allocation policyφ(H∗,S,x) is the one that max-
imizes the sum of performance measures under a constraint
Pmax on the total resource budget.

Note that, in problem (1), S can be seen as the adjacency
matrix of a very large graph G where each transmitter-receiver
pair is a node and the connecting edges reflect the interference
channels between pairs. Similarly, the transmitter states x can
be seen as a graph signal on the nodes of G. In large scale
wireless networks, where the number of transmitter/receiver
pairs m is very large, the full network channel state can in-
stead be modeled as a continuum of interfering links between
devices. In this paper, we model a large wireless system struc-
ture as a manifoldM, i.e., the limit of graph G as m→∞.

Explicitly, we consider the channel state to be a smooth
d-dimensional manifoldM, which is a topological space that
is locally Euclidean. The transmitter states are modeled as
a manifold signal f : M → R, which can be seen as the
limit of the graph signal x when the network grows very large.
Therefore, we can reformulate (1) in the limit sense as

H∗ := argmax
H

EM,f

∫
u∈M

r (φ(H,M, f)(u),M, f(u)) du,

(2)

s.t. EM,f

∫
u∈M

φ(H,M, f)(u)du ≤ Pmax,

φ(H,M, f)(u) ∈ [0, p0], u ∈M.

Observe in (2) that the resource allocation is processed over
a manifoldM, while the utility and constraints are evaluated
over the manifold rather than a discrete set of nodes. While
continuous manifolds cannot be directly measured or observed
in practice, the modeling of very large graphs as manifolds in
(2) is used in this paper as an analytical tool necessary for es-
tablishing the desired stability properties of policiesφ(H, ·, ·).

The challenge with problem (2) is that the manifold is
infinite-dimensional, so the policy parametrization has to be
independent of the manifold dimension. This requirement is
satisfied by a convolutional parametrization; thus, in the fol-
lowing we propose to parametrize φ(H,M, f) as a Manifold
Neural Network (MNN).

2.1. Resource Allocation with Manifold Neural Networks

In this paper we consider d-dimensional manifoldsM which
are smooth and compact embedded submanifolds of Euclidean
space. To each manifoldM, a unique operator L can be asso-
ciated which characterizes how information propagates onM.
This operator, called Laplace-Beltrami operator, is defined as
Lf(u) = −div(∇f)(u), which is the divergence of the gradi-
ent of manifold signal f in the local Euclidean space around
the point u ∈ M. Akin to the Laplacian matrix in graphs, the
Laplace-Beltrami operator measures the total variation of the
manifold signal f .

The Laplace-Beltrami operator is a self-adjoint and positive-
semidefinite operator. Therefore, it has a discrete, real
and non-negative spectrum {λi,ϕi}i∈N+ which satisfies
Lϕi = λiϕi. Ordering the λi in increasing order, i.e.,
0 ≤ λ1 ≤ λ2 ≤ . . ., it can be shown that λi grows as
i2/d where d is the manifold dimension [15]. The eigen-
functions {ϕ}i∈N+ form an orthonormal basis of signals
f : M → R. Thus, a square-integrable signal f can be
represented as f =

∑∞
i=1〈f,ϕi〉ϕi.

Leveraging the eigendecomposition of L, the spectral con-
volution of a manifold signal can be expressed as the filter

H(L)f :=

∞∑
i=1

K−1∑
k=0

hkλ
k
i 〈f,ϕi〉ϕi, (3)

where h0, . . . , hK−1 are coefficients that define a filter func-
tion h(λ) =

∑K−1
k=0 hkλ

k determining the amplification of the
signal’s spectral components based on their eigenvalues. From
(3), we see that the manifold convolution only depends on the
filter function and the Laplace-Beltrami operator eigenpairs.
Hence, a manifold convolutional filter can be easily trans-
ferred to other manifolds by replacing operator L.

Given the convolutional filter in (3), Manifold Neural Net-
works (MNNs) are defined as a cascade of layers where each
layer consists of a bank of manifold convolutional filters and a
nonlinear activation function. Letting σl denote the activation
function at layer l, the p-th output feature of the l-th layer of a
MNN can be written as

fpl = σl

Fl−1∑
q=1

Hqp
l (L)fql−1

 (4)



where, for 1 ≤ p ≤ Fl and 1 ≤ q ≤ Fl−1, Hqp
l is the fil-

ter mapping the q-th feature from layer l − 1 to the p-th fea-
ture of layer l. The output features of the last layer, given
by fpL for 1 ≤ p ≤ FL, are the MNN outputs gp. The in-
put features at the first layer, fq0 , are the input data fq for
1 ≤ q ≤ F0. Since in problem (2) the transmitter states
and the policy are one-dimensional on the transmitter-receiver
pairs, when parametrizing φ(H,M, f) as a GNN we have
F0 = FL = 1. Letting g = g1 and f = f1, we can thus
represent the MNN (4) more succinctly as g = φ(H,M, f).

3. STABILITY ANALYSIS

In this paper, we analyze the stability of MNNs to absolute
perturbations of the Laplace-Beltrami operator, which are pre-
sented in Definition 1.

Definition 1 (Absolute perturbations). Let L be the Laplace-
Beltrami operator of a manifoldM. An absolute perturbation
of L is defined as

L′ = L+ A, (5)

where the absolute perturbation operator A is symmetric.

The absolute perturbation model introduced in Definition
1 is a rather general perturbation model including many dif-
ferent types of perturbations. In particular, it can be used to
approximate additive environmental noise in wireless fading
channel states.

3.1. Frequency difference threshold (FDT) filters

The main challenge with absolute perturbations of L is that
they lead to perturbations of its spectrum. While these per-
turbations can be characterized individually, their cumulative
effect is hard to measure because the spectrum is infinite-
dimensional. Nonetheless, this issue is alleviated by the fact
that the eigenvalues of L accumulate in a portion of the spec-
trum. This is formalized in Proposition 1 which is a direct
consequence of Weyl’s law.

Proposition 1 ( [15]). LetM be a d-dimensional embedded
manifold with Laplace-Beltrami operator L, and let λk denote
the eigenvalues of L. Let C1 denote an arbitrary constant, Cd
be the volume of the d-dimensional unit ball and Vol(M) the
volume of the manifold. For any α > 0, there exists N1 given
by

N1 = d(αd/C1)d/(2−d)(CdVol(M))2/(2−d)e (6)

such that, for all k > N1, it holds that

λk+1 − λk ≤ α.

Proposition 1 is important because it allows us to gather
eigenvalues that are close enough, i.e., less than α apart, into
a finite number of groups. This eigenvalue grouping, called
the α-separated spectrum, is introduced in Definition 2. The
manifold filters which achieve it, called Frequency Difference
Threshold (FDT) filters, are presented in Definition 3.

0 Λ1 Λ2 Λ3 . . . . . . . . .

h(λ)

Fig. 1: An α-FDT filter that separates the spectrum of L by
grouping eigenvalues that are less than α apart.

Definition 2 (α-separated spectrum). The α-separated spec-
trum of a Laplace-Beltrami operator L is defined as the par-
tition Λ1(α) ∪ . . . ∪ ΛN (α) such that, all λi ∈ Λk(α) and
λj ∈ Λl(α), k 6= l, satisfy

|λi − λj | > α.

Definition 3 (α-FDT filter). The α-frequency difference
threshold (α-FDT) filter is defined as a filter h(L) whose
frequency response satisfies

|h(λi)− h(λj)| ≤ ∆k for all λi, λj ∈ Λk(α) (7)

with ∆k ≤ ∆ for k = 1, . . . , N .

Eigenvalues belonging to different groups, i.e., λi ∈
Λk(α) and λj ∈ Λl(α) for k 6= l, are at least α apart from
each other. Conversely, eigenvalues within the same group,
i.e., λi, λj ∈ Λk(α), are always less than α apart. The α-
FDT filter achieves this spectrum separation by giving similar
frequency responses—which differ by at most ∆k—for all
λi ∈ Λk(α).

3.2. Manifold Neural Network Stability

As a consequence of spectrum separation, we can show that
manifold neural networks composed of α-FDT manifold filters
are stable to the absolute perturbations to the Laplace-Beltrami
operator as specified in Definition 1. This is stated and proved
in Theorem 1 under Assumptions 1 and 2.

Assumption 1. The filter function h : R→ R is B- Lipschitz
continuous and non-amplifying, i.e.,

|h(a)− h(b)| ≤ B|a− b|, |h(a)| < 1. (8)

Assumption 2. The activation function σ is normalized Lips-
chitz continous, i.e., |σ(a)− σ(b)| ≤ |a− b|, with σ(0) = 0.

Theorem 1 (Manifold Neural network stability). LetM be a
manifold with Laplace-Beltrami operator L. Let f be a man-
ifold signal and φ(H,L, f) an L-layer manifold neural net-
work onM (4) with F0 = FL = 1 input and output features
and Fl = F, i = 1, 2, . . . , L− 1 features per layer, and where
the filters h(L) are α-FDT filters with ∆ = πε/(2α − 2ε)[cf.
Definition 3]. Consider an absolute perturbation L′ = L+ A
of the Laplace-Beltrami operator L [cf. Definition 1] where
‖A‖ = ε ≤ α. Then, under Assumptions 1 and 2 it holds:

‖φ(H,L, f)− φ(H,L′, f)‖

≤ LFL−1

(
πN

α− ε
+B

)
ε‖f‖.

(9)



where N is the number of spectrum partitions.

Proof. See [16].

Provided that Assumption 1 and 2 are satisfied, MNNs
with α-FDT filters are thus stable to absolute perturbations
of the operator L. Note that these assumptions are reason-
able because no constraint is put on the Lipschitz constant B,
and most common activation functions, such as the ReLU, the
modulus function and the sigmoid, satisfy the normalized Lip-
schitz continuity condition. From the bound in Theorem 1, we
see that MNN stability depends on the number of layers L and
the number of features per layer F , i.e., it is worse for deeper
and wider MNNs. More importantly, we observe that MNNs
have good stability if the Lipschitz constantB is small and α is
large. However, smallB and large α lead to less discriminative
filters. While this reveals a stability-discriminability trade-
off, the presence of nonlinearities improves the discriminative
power of MNNs because, akin to rectifiers, they spread some
of the data’s spectral content to parts of the spectrum where the
next layer’s FDT filters can discriminate it. Therefore, con-
volutional neural network architectures provide a stable and
transferable parametrization to resource allocation policies for
large scale wireless networks.

4. NUMERICAL EXPERIMENTS

In this section, we verify the transference and stability proper-
ties of the proposed MNN resource allocation policies by nu-
merically evaluating such properties with learned GNN-based
policies on large graphs. While dropping m transmitters ran-
domly over a range of ai ∈ [−m,m]2, the paired receivers are
dropped within bi ∈ [ai+[−m/4,m/4]]2. When considering
the large-scale pathloss gain and a random fast fading gain, the
link state can be written as sij = log(d−2.2

ij hf ), where dij is
the distance between pair i and j, while hf ∼ Rayleigh(2)
is the random fading. The GNN is constructed with L = 10
layers with a K = 5 tap filter and a ReLu nonlinear activation
function in each layer.

When verifying the transferability of our proposed GNN
methods, we compare with three existing baseline methods for
solving this resource allocation problem. They are WMMSE
[2], equal resource allocation (i.e. assign Pmax/m to each
transmitter) and random resource allocation (i.e. randomly se-
lect Pmax/p0 transmitters and assign p0). We train a GNN
policy on a network of size m = 50 using unsupervised learn-
ing [5] and evaluate the trained policy on newly randomly gen-
erated wireless networks of larger size but the same overall
network density. Observe the performance comparison shown
in Figure 2 that the GNNs trained on smaller wireless networks
can still outperform other methods on larger size networks,
demonstrating transferable performance.

To study the stability properties in large scale wireless sys-
tem, we model environmental noise by adding a log-normal
matrix to the original channel state S with 500 pairs of trans-
mitters and receivers. With the original trained GNN em-
ployed, we measure the stability by the difference of the ra-
tios of the final sum-of-rate achieved by the GNN on the noisy
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Fig. 2: Sum-of-rate achieved by GNN trained on small net-
work and execute on larger networks compared with other
baseline methods.
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inal wireless network setting and the perturbed one.

channel states and that achieved by WMMSE. We can observe
from Figure 3 that the difference increases with the number
of layers and the number of filters per layer in the constructed
GNN but is still generally small. This further validates the sta-
bility result in Theorem 1 of GNN-based resource allocation
policies in large scale networks.

5. CONCLUSIONS

In this paper, we have formulated the constrained resource al-
location problem in large scale wireless systems. While the
wireless network structure can be modeled as discrete graphs,
large wireless networks tend to converge to a manifold struc-
ture as the number of network devices grow. We proposed a
Manifold Neural Network (MNN) method for solving and an-
alyzing resource allocation policies in large wireless networks.
We proved that MNN is stable under the absolute perturbations
to the Laplace-Beltrami operator of the manifold which in turn
provides a stable and transferable allocation parametrization
for large scale wireless networks. We verified results numer-
ically with GNNs trained on large wireless network settings
and compared performance with baseline methods.



A. PROOF OF THEOREM 1

Proof. Begin with the definition of spectral convolution oper-
ators in (3), we can rewrite the norm difference between two
outputs as:

‖h(L)f − h(L′)f‖

=

∥∥∥∥∥
∞∑
i=1

h(λi)〈f,φi〉φi −
∞∑
i=1

h(λ′i)〈f,φ′i〉φ′i

∥∥∥∥∥ . (10)

We denote the index of partitions that contain a single eigen-
value as a set Ks and the rest as a set Km. We can decompose
the filter function as h(λ) = h(0)(λ) +

∑
l∈Km

h(l)(λ) with

h(0)(λ) =

{
h(λ)−

∑
l∈Km

h(Cl) λ ∈ [Λk(α)]k∈Ks

0 otherwise
and

(11)

h(l)(λ) =

 h(Cl) λ ∈ [Λk(α)]k∈Ks

h(λ) λ ∈ Λl(α)
0 otherwise

(12)

whereCl is some constant in Λl(α). We can start by analyzing
the output difference of h(0)(λ). With the triangle inequality,
the norm difference can then be written as∥∥∥∥∥

∞∑
i=1

h(0)(λi)〈f,φi〉φi − h(0)(λ′i)〈f,φ′i〉φ′i

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi〉φi − h(0)(λi)〈f,φ′i〉φ′i

+ h(0)(λi)〈f,φ′i〉φ′i − h(0)(λ′i)〈f,φ′i〉φ′i

∥∥∥∥∥ (13)

≤

∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi〉φi − h(0)(λi)〈f,φ′i〉φ′i

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φ′i〉φ′i − h(0)(λ′i)〈f,φ′i〉φ′i

∥∥∥∥∥ (14)

≤

∥∥∥∥∥
∞∑
i=1

h(0)(λi)(〈f,φi〉φi − 〈f,φi〉φ′i + 〈f,φi〉φ′i

− 〈f,φ′i〉φ′i)

∥∥∥∥∥+

∥∥∥∥∥
∞∑
i=1

(h(0)(λi)− h(0)(λ′i))〈f,φ′i〉φ′i

∥∥∥∥∥
(15)

≤

∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi〉(φi − φ′i)

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi − φ′i〉φ′i

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
i=1

(h(0)(λi)− h(0)(λ′i))〈f,φ′i〉φ′i

∥∥∥∥∥ (16)

Now we need to include two important lemmas to analyze the
influence on eigenvalues and eigenfunctions caused by the per-
turbation.

Lemma 1. [Weyl’s Theorem] The eigenvalues of LB opera-
tors L and perturbed L′ = L+ A satisfy

|λi − λ′i| ≤ ‖A‖, for all i = 1, 2 . . . (17)

Proof of Lemma 1. The minimax principle asserts that

λi(L) = max
codimT=i−1

λ[L, T ]

= max
codimT≤i−1

min
u∈T,‖u‖=1

〈Lu, u〉. (18)

Then for any 1 ≤ k, we have

λi(L′) = max
codimT≤i−1

min
u∈T,‖u‖=1

〈(L+ A)u, u〉 (19)

= max
codimT≤i−1

min
u∈T,‖u‖=1

(〈(Lu, u〉+ 〈Au, u〉) (20)

≥ max
codimT≤i−1

min
u∈T,‖u‖=1

〈Lu, u〉+ λ1(A)) (21)

= λ1(A) + max
codimT≤i−1

min
u∈T,‖u‖=1

〈Su, u〉 (22)

= λk(S) + λ1(A). (23)

Similarly, we can have λi(L′) ≤ λi(L) + maxk λk(A). This
leads to λ1(A) ≤ λi(S + A) − λk(S) ≤ maxk λk(A). This
leads to the conclusion that:

|λ′i − λi| ≤ ‖A‖. (24)

To measure the difference of eigenfunctions, we introduce
the Davis-Kahan sin θ theorem as follows.

Lemma 2 (Davis-Kahan sin θ Theorem). Suppose the spec-
tra of operators L and L′ are partitioned as σ

⋃
Σ and ω

⋃
Ω

respectively, with σ
⋂

Σ = ∅ and ω
⋂

Ω = ∅. Then we have

‖EL(σ)− EL′(ω)‖ ≤ π

2

‖(L′ − L)EL(σ)‖
d

≤ π

2

‖L′ − L‖
d

,

(25)
where d satisfies minx∈σ,y∈Ω |x−y| ≥ d and minx∈Σ,y∈ω |x−
y| ≥ d.

Proof of Lemma 2. See [17].

For the first term in (16), we employ Lemma 2 and there-
fore we have σ = λi and ω = λ′i, for λi ∈ [Λk(α)]k∈Ks

we
can have

‖φi − φ′i‖ ≤
π

2

‖A‖
α− ε

=
π

2

ε

α− ε
. (26)

Here d can be seen as d = minλi∈Λk(α),λj∈Λl(α),k 6=l |λi−λ′j |.
Combined with the fact that |λi − λj | > α and |λi − λ′i| ≤ ε
for all λi ∈ Λk(α), λj ∈ Λl(α), k 6= l, we have d ≥ α − ε.



With Cauchy-Schwartz inequality, we have the first term in
(16) bounded as∥∥∥∥∥

∞∑
i=1

h(0)(λi)〈f,φi〉(φi − φ′i)

∥∥∥∥∥
≤
∞∑
i=1

|h(0)(λi)||〈f,φi〉| ‖φi − φ′i‖ ≤
Nsπε

2(α− ε)
‖f‖. (27)

The second term in (16) is bounded as∥∥∥∥∥
∞∑
i=1

h(0)(λi)〈f,φi − φ′i〉φ′i

∥∥∥∥∥
≤
∞∑
i=1

|h(0)(λi)|‖φi − φ′i‖‖f‖ ≤
Nsπε

2(α− ε)
‖f‖. (28)

These two bounds are obtained by noting that |h(0)(λ)| < 1
and h(0)(λ) = 0 for λ ∈ [Λk(α)]k∈Km . The number of eigen-
values within [Λk(α)]k∈Ks

is denoted asNs. The third term in
(16) can be bounded by the Lipschitz continuity of h combined
with Lemma 1.∥∥∥∥∥

∞∑
i=1

(h(0)(λi)− h(0)(λ′i))〈f,φ′i〉φ′i

∥∥∥∥∥
2

≤
∞∑
i=1

|h(0)(λi)− h(0)(λ′i)|2|〈f,φ′i〉|2

≤
∞∑
i=1

B2|λi − λ′i|2|〈f,φ′i〉|2 ≤ B2ε2‖f‖2. (29)

Then we need to analyze the output difference of h(l)(λ),
we can bound this as∥∥∥h(l)(L)f − h(l)(L′)f

∥∥∥
≤ ‖(h(Cl) + ∆)f − (h(Cl)−∆)f‖ ≤ 2∆‖f‖, (30)

where h(l)(L) and h(l)(L′) are manifold filters with filter
function h(l)(λ) on the LB operators L and L′ respectively.
Combining the filter functions, we can write

‖h(L)f − h(L′)f‖ =∥∥∥∥∥h(0)(L)f +
∑
l∈Km

h(l)(L)f − h(0)(L′)f −
∑
l∈Km

h(l)(L′)f

∥∥∥∥∥
(31)

≤ ‖h(0)(L)f − h(0)(L′)f‖+
∑
l∈Km

‖h(l)(L)f − h(l)(L′)f‖

(32)

≤ Nsπε

α− ε
‖f‖+Bε‖f‖+ 2(N −Ns)∆‖f‖. (33)

With ∆ set as πε
2(α−ε) , the bound became

‖h(L)f − h(L′)f‖ ≤ Nπε

α− ε
‖f‖+Bε‖f‖. (34)

We can extend the stability result to the MNN. To bound the
output difference ‖y − y′‖, we need to write in the form of
features of the final layer

‖φ(H,L, f)− φ(H,L′, f)‖ =

FL∑
q=1

‖fqL − f
′q
L ‖. (35)

The output signal of layer l of MNN Φ(H,L, f) can be writ-
ten as

fpl = σ

Fl−1∑
q=1

hpql (L)fql−1

 . (36)

Similarly, for the perturbed L′ the corresponding MNN is
Φ(H,L′, f) the output signal can be written as

f
′p
l = σ

Fl−1∑
q=1

Hpq
l (L′)f

′q
l−1

 . (37)

The difference therefore becomes

‖fpl − f
′p
l ‖

=

∥∥∥∥∥∥σ
Fl−1∑
q=1

Hpq
l (L)fql−1

− σ
Fl−1∑
q=1

Hpq
l (L′)f

′q
l−1

∥∥∥∥∥∥ .
(38)

With the assumption that σ is normalized Lipschitz, we have

‖fpl − f
′p
l ‖

≤

∥∥∥∥∥∥
Fl−1∑
q=1

Hpq
l (L)fql−1 −Hpq

l (L′)f
′q
l−1

∥∥∥∥∥∥ (39)

≤
Fl−1∑
q=1

∥∥∥Hpq
l (L)fql−1 −Hpq

l (L′)f
′q
l−1

∥∥∥ . (40)

By adding and subtracting Hpq
l (L′)fql−1 from each term, com-

bined with the triangle inequality we can get∥∥∥Hpq
l (L)fql−1 −Hpq

l (L′)f
′q
l−1

∥∥∥
≤
∥∥Hpq

l (L)fql−1 −Hpq
l (L′)fql−1

∥∥
+
∥∥∥Hpq

l (L′)fql−1 −Hpq
l (L′)f

′q
l−1

∥∥∥ (41)

The first term can be bounded with (34) for absolute pertur-
bations. The second term can be decomposed by Cauchy-
Schwartz inequality and non-amplifying of the filter functions
as ∥∥∥fpl − f ′pl ∥∥∥ ≤ Fl−1∑

q=1

Cperε‖fql−1‖+

Fl−1∑
q=1

‖fql−1 − f
′q
l−1‖,

(42)

where we use Cper to represent the terms in (34) for simplic-
ity. To solve this recursion, we need to compute the bound for



‖fpl ‖. By normalized Lipschitz continuity of σ and the fact
that σ(0) = 0, we can get

‖fpl ‖ ≤

∥∥∥∥∥∥
Fl−1∑
q=1

hpql (L)fql−1

∥∥∥∥∥∥ ≤
Fl−1∑
q=1

‖hpql (L)‖ ‖fql−1‖

≤
Fl−1∑
q=1

‖fql−1‖ ≤
l−1∏
l′=1

Fl′
F0∑
q=1

‖fq‖. (43)

Insert this conclusion back to solve the recursion, we can get∥∥∥fpl − f ′pl ∥∥∥ ≤ lCperε
(
l−1∏
l′=1

Fl′

)
F0∑
q=1

‖fq‖. (44)

Replace l with L we can obtain

‖φ(H,L, f)− φ(H,L′, f)‖

≤
FL∑
q=1

(
LCperε

(
L−1∏
l′=1

Fl′

)
F0∑
q=1

‖fq‖

)
. (45)

With F0 = FL = 1 and Fl = F for 1 ≤ l ≤ L − 1, then we
have

‖φ(H,L, f)− φ(H,L′, f)‖ ≤ LFL−1Cperε‖f‖, (46)

with Cper = Nπ
α−ε +B as the terms in (34).
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