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Abstract—Convolutional Neural Networks (CNNs) have been
applied to data with underlying non-Euclidean structures and
have achieved impressive successes. This brings the stability anal-
ysis of CNNs on non-Euclidean domains into notice because CNNs
have been proved stable on Euclidean domains. This paper focuses
on the stability of CNNs on Riemannian manifolds. By taking
the Laplace-Beltrami operators into consideration, we construct
an a-frequency difference threshold filter to help separate the
spectrum of the operator with an infinite dimensionality. We
further construct a manifold neural network architecture with
these filters. We prove that both the manifold filters and neural
networks are stable under absolute perturbations to the operators.
The results also implicate a trade-off between the stability and
discriminability of manifold neural networks. Finally we verify
our conclusions with numerical experiments in a wireless adhoc
network scenario.

Index Terms—Deep neural networks, Riemannian manifolds,
stability analysis

I. INTRODUCTION

Convolutional neural networks (CNNs) are machine learning
architectures made up of layers where each layer composes
a bank of convolutional filters with a pointwise nonlinearity.
On problems where data is Euclidean, they have become a
popular architecture due to their impressive performance in
tasks ranging from speech recognition [1] to computer vision
[2], which is largely attributed to the fact that CNNs are
provably stable [3]. But in the physical world, their application
is limited because many problems deal with data that is non-
Euclidean. This is the case, for instance, of resource allocation
in wireless ad-hoc communication networks [4], detection and
recognition in social networks [5] and prediction of influenza
epidemic outbreaks [6].

In recent years, a myriad of extensions of CNNs to non-
Euclidean domains have been proposed to fill that gap [7]-[10].
These architectures have been able to reproduce the successes
of CNNs on Euclidean domains to a large extent [11], [12],
which naturally sparks the question of whether non-Euclidean
CNNs are also stable. In this paper, we aim to answer this
question by analyzing the properties of CNNs defined on the
most general type of non-Euclidean domain — the manifold.
By focusing on manifolds, our analysis has the benefit of being
broad enough so that it can also be particularized to more
specific non-Euclidean domains such as graphs, which can be
seen as manifold discretizations.

Explicitly, we study the stability of manifold CNNs to
absolute perturbations of the Laplace-Beltrami operator £ asso-
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ciated with the manifold (Definition 1). We start by analyzing
the stability of the convolution operation, which is defined
as a pointwise operation on the spectrum of L. Given that
absolute perturbations of £ spawn absolute perturbations to
all of its eigenvalues, designing stable manifold convolutions
is challenging because the spectrum of the Laplace-Beltrami
operator is infinite-dimensional. We address this challenge by
introducing frequency difference threshold (FDT) filters (Def-
inition 3), which separate the Laplacian spectrum into groups
of eigenvalues that are less than some threshold o« apart. We
then show that these filters are stable to absolute perturbations
of £ (Theorem 1), and that this property is inherited by
manifold CNNs (Theorem 2). The main implication of these
results is that there is a trade-off between the stability and
discriminability of manifold neural networks in the form of
the frequency difference threshold of the FDT filters.

Related work includes a comprehensive study of the stability
of graph neural networks (GNNs) in [13] and [14], which con-
sider absolute and relative perturbations of the graph structure
respectively, and the GNN stability analysis in [15], which
focuses on perturbations of the graph spectrum. More in line
with our paper, [16] studies stability of GNNs to perturbations
of the underlying graph model, which is assumed to be a
graphon. Unlike manifolds, however, graphons can only model
dense graphs. More flexible models such as continuous graph
models with tunable sparsity and generic topological spaces
have been considered in [17] and [18] respectively, but these
papers focus on the transferability and not on the stability of
convolutional neural networks in these domains.

The rest of this paper is organized as follows. We start
with a brief review of manifolds and Laplacian operators in
Section II. We further introduce the framework of manifold
convolutions and neural networks. In Section III, we introduce
FDT filters and prove that the filters are stable under absolute
perturbations of the Laplacian operator. We then extend this
analysis to neural networks. Our results are verified numerically
on a power allocation problem in wireless adhoc networks in
Section IV, and conclusions are presented in Section V.

II. PRELIMINARY DEFINITIONS

In order to analyze the stability properties of neural networks
on manifolds, we start by reviewing the notions of signals,
Laplacian operators and convolutional neural networks in these
domains.

A. Manifolds and manifold signals

A manifold is a topological space that is locally Eu-
clidean around each point. More formally, a differentiable d-



dimensional manifold is a topological space where each point
has a neighborhood that is homeomorphic to a d-dimensional
Euclidean space, i.e., the tangent space. A Riemannian man-
ifold, denoted (M,g), is a real and smooth manifold M
equipped with a positive definite inner product g, on the
tangent space 13, M at each point x. The collection of tangent
spaces of all points on (M, g) is denoted as T'M, and the
collection of scalar functions and tangent vector functions on
(M, g) are denoted as L?(M) and L?(T'M) respectively. In
this paper, we consider compact Riemannian manifolds M.
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Figure 1: An example of manifold signal where the curve is
the underlying manifold structure. Colors stand for values of
the signal at the point.

Data supported on the manifold M is represented as mani-
fold signals, which are defined as functions f € L?(M). Given
a manifold signal f € L?(M) : M — R, the Laplace-Beltrami
operator L is defined as

Lf=—div(Vf), (1)

where V : L2(M) — L?(TM) is an operator called intrinsic
gradient. Compared with the classical notion of gradient, which
indicates the direction of the fastest change of a function at a
given point, the difference here is that the direction indicated
by the intrinsic gradient is a tangent vector in L?(T'M).
The operator div is the intrinsic divergence, which is adjoint
to the gradient operator. Akin to the Laplacian operator in
Euclidean domains or the graph Laplacian in graph signal
processing (GSP), the Laplace-Beltrami operator defines a
notion of shift for signals on a manifold M. In fact, £ has
a similar interpretation to that of the graph Laplacian as the
difference between the local average function value around a
point and the function value at the point itself [7].
The Laplacian operator £ is a self-adjoint and positive-
semidefinite operator. As such, it admits an eigendecomposition
given by .
Lf=Y Xlf ¢i)oi. ©)

i=1
where \; are real eigenvalues and ¢; are the corresponding
eigenfunctions. Because the manifold M is compact, the spec-

trum {\;, @; };en+ is additionally discrete. If the eigenvalues
are ordered in increasing order as 0 < A\; < Ay < A3 < .., it
can be shown that, for a manifold on d dimensions, \; grows
as /¢ [19].

Similarly to how the eigenvalues of the graph Laplacian are
interpreted as frequencies in GSP, we interpret the Laplacian-
Beltrami operator eigenvalues J); as frequencies associated
with oscillation modes ¢;. Moreover, since the eigenfunctions
@1, d2, ... form an orthonormal basis of L?(M), a change
of basis operation for signals f can be defined, i.e., manifold
signals f € L?(M) can be represented on the manifold’s

eigenbasis as f = >~ (f, i) d;.

B. Manifold convolutions and manifold neural networks

Drawing a parallel with the spectral convolution operation
on Euclidean domains, we leverage the eigendecomposition of
the Laplacian (2) to define the convolution of manifold signals
as a pointwise operation in the spectrum of L. Explicitly, we
define a manifold convolutional filter h(£) as

oo K—-1
h(L)f =3 (S, i) 3)
i=1 k=0
where hg, ..., hx_1 are the filter coefficients or taps.

Projecting h(L)f onto {¢;};cn+, We see that the spectral
response of the manifold convolution is is given by h(\) =

kK:_ol hiAF. This highlights the fact that the frequency re-
sponse of a manifold convolution only depends on the coeffi-
cients hj, and the eigenvalues of the Laplace-Beltrami operator.
It also implies that, if the underlying manifold changes — and
thus £ —, the behavior of the filter h can be replicated on
the new manifold M’ by evaluating h(\) at the eigenvalues
of the new Laplacian £’. Another important consequence of
the spectral representation of h(L£) being a polynomial is that,
as K — oo, h(£) can be used to implement any smooth
spectral response h(\) with convergent Taylor series around
each \g € R as K — oo [20].

From the definition of the convolution operation on M (3),
convolutional neural networks (CNNs) are straightforward to
define. A CNN consists of a cascade of L layers, each of which
contains a bank of convolutional filters followed by a nonlinear
activation function. Denoting the nonlinearity o, the [-th layer
of a L-layer CNN on the manifold M is given by:

Fi_q

fFa)y=o | Y 0L AL (2) &)
q=1

for | = 1,2,...,L. Each of the filters h}/(£) is as in (3)
and maps the g-th feature from the [ — 1-th layer to the p-
th feature of the [-th layer for 1 < ¢ < Fj_jand 1 < p <
Fy. The output of this neural network is given by y” = f7
for 1 < p < Fr and the input features at the first layer, fg ,
are the input data f? for 1 < ¢ < Fy. For a more concise
representation of this CNN, we can alternatively write it as
the map y = ®(H, L, f), where H is a tensor gathering the
learnable parameters h)? at all layers of the CNN. We will
refer to this map as a manifold convolutional neural network
or manifold neural network (MNN) for short.



III. STABILITY OF MANIFOLD NEURAL NETWORKS

In order to characterize the stability properties of MNNs,
we first have to study the stability of their main component
— the convolutional filter in (3). In particular, we analyze the
stability of convolutional filters to absolute perturbations of the
Laplace-Beltrami operator, which are specified in Definition 1.

Definition 1 (Absolute perturbations). Let £ be the Laplace-
Beltrami operator of a Riemannian manifold M. An absolute
perturbation of £ is defined as

L'=L+A, (5)
where the absolute perturbation operator A is symmetric.

The absolute perturbation model introduced in Definition
1 only requires A to be symmetric. Thus, it is a rather
generic perturbation model encompassing many different types
of perturbations and, in particular, allowing to model a wide
array of perturbations to the underlying manifold M.

A. Frequency difference threshold (FDT) filters

Given the spectral decomposition of the Laplace-Beltrami
operator (1), we can expect an absolute perturbation of L
to spawn some sort of perturbation to the eigenvalues ;.
Since the spectral convolution operation (3) depends on the
evaluation of h(\) at each )\, its stability analysis will depend
on the individual effects of the perturbation on each of these
eigenvalues. A challenge in the case of manifolds is that the
spectrum of L is infinite-dimensional, i.e., there is an infinite
(albeit countable) number of eigenvalues A;. However, it is
possible to show that these eigenvalues accumulate in certain
parts of the spectrum. This is demonstrated in Proposition 1.

Proposition 1. Let (M, g) be a d-dimensional Riemannian
manifold with Laplacian-Beltrami operator £, and let A, denote
the eigenvalues of L. Let C; denote an arbitrary constant and
let C4 be the volume of the d-dimensional unit ball. For any
a > 0, there exists /V; given by

N1 = [(ad/C1)" =D (CaVol(M, g))/ DT (6)
such that, for all £ > Ny, it holds that
A1 — A Lo

Proof. This is a direct consequence of Weyl’s law [19]. O

Proposition 1 is important because it suggests a strategy
to mitigate the challenge posed by the infinite-dimensional
spectrum of L. Since eigenvalues accumulate in certain parts
of this spectrum, for av > 0 we can gather eigenvalues that are
less than «v apart in a finite number of groups. This a-separated
spectrum, formalized in Definition 2, is achieved by the so-
called frequency difference threshold (FDT) filters introduced
in Definition 3.

Definition 2 («-separated spectrum). The «-separated spec-
trum of a Laplace-Beltrami operator £ is defined as the union
of the set of a-separated eigenvalues D,

’D:{AZZZL )\Z‘fAi_1>Oé, )\1;+1*>\1'>Oé}
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Figure 2: Eigenvalues of a Laplacian operator. Observe that
the eigenvalues of the Laplacian operator tend to be grouped
in certain parts of the spectrum.

and the set of a-close eigenvalues N' = D,

N = {N1,No, -+ Ny} st min|\ — A >«
for all \; € Na,)\j € Ny,a #b.

Definition 3 (o-FDT filter). On the manifold M, an a-
frequency difference threshold (a-FDT) filter is a filter whose
frequency response h(\) satisfies

h(A) =Ch, A in A, Ajl 7
(A € [min Ai, max Aj] ©)
for all n = 1,2,..., N. This makes the convolution operation

as:

N

h(C£) = h(\)(f, di)i + Y Culf  En)En,  (8)
i€D n=1

where F,, is the eigenspace composed of {¢;}icn, -

The eigenvalues A; in the set D are at least o apart
from their preceding and succeeding eigenvalues \;_; and
Ai+1- Hence, according to Definition 3, an FDT filter with
threshold « treats them as independent eigenvalues, like a
conventional convolutional filter (9) would. The eigenvalues
in the complement set N’ = D are divided in groups N,
where each group contains eigenvalues that are less than o
apart from at least one their neighbors. As such, the distance
between any two groups N, Ny, a # b, is larger than «.
To achieve spectrum separation, the a-FDT filter imposes a
constant frequency response h();) = C, for all i € N,. In
other words, it treats all the eigenvalues in a group N, as the
same. Note that, while the h(\) in Definition 3 is not a smooth
function, we can still obtain a smooth approximation of an FDT
filter in the form of (3).

B. FDT filter stability

Thanks to spectrum separation, a-FDT manifold filters can
be shown to be stable under the absolute perturbations to the
Laplace-Beltrami operator in Definition 1. We can state and
prove this in Theorem 1 under Assumption 1.

Assumption 1. The filter function h : R — R is B- Lipschitz
continuous and non-amplifying, i.e.,

[h(a) = h(b)] < Bla—b], |h(a)] <1. ©
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Figure 3: An o-FDT filter that separates the spectrum of the
Laplacian operator by grouping eigenvalues that are less than
« apart in sets ;. Note that the frequency response is constant
for all eigenvalues in a group N;.

Theorem 1 (FDT filter stability). Let M be a manifold with
Laplace-Beltrami operator £. Let f be a manifold signal and
h(L£) an o-FDT filter on M [cf. Definition 3]. Consider an
absolute perturbation £ = L + A of the Laplace-Beltrami
operator £ [cf. Definition 1] where ||A|| = € < «. Then, under
Assumption 1 it holds

7(D+ N)

In(2)f ~ h(e) s < T

where D and N are the cardinalities of sets D and N

ellfl + BDe|f] - (10)

Provided that Assumption 1 is satisfied, FDT filters are thus
stable to absolute perturbations of the operator £. Note that
this assumption is rather reasonable, as there are no constraints
on the value of the Lipschitz constant B. The stability bound
depends on (i) the variability of the FDT filter as measured
by the Lipschitz constant B and (ii) its frequency difference
threshold, both directly through «, and indirectly through D
and N. It is also split into two terms. The first one arises from
the difference between the eigenfunctions of £ and £, while
the second is a result of the distance between their eigenvalues.

We observe that stability is improved if the Lipschitz con-
stant B is small. However, this causes the filter to become
less discriminative and give similar response to all spectral
components. With a larger «, the FDT filter identifies fewer
eigenvalues as being a-separated, which decreases D. While
this reflects an increase in the number of groups N, a certain
number of eigenvalues previously in D ends up being replaced
by a fewer number of groups in N, leading D + N to also
decrease. Thus, larger values of o improve stability, but this
also happens at the cost of discriminability as filters with large
« separate the spectrum more sparsely, i.e., they identify fewer
eigenvalues as being a-separated. Interestingly, this stability-
discriminability trade-off does not depend on the magnitude of
the frequencies amplified by the filter (as is the case in, e.g.,
[14], [21]). Instead, it is associated with the filter’s precision
in telling neighboring frequencies apart wherever they mare in
the spectrum.

C. Neural network stability

Manifold neural networks with banks of filters like the one
in (7) inherit the stability properties of «-FDT filters. This is

demonstrated in Theorem 2 under Assumption 2.

Assumption 2. The activation function ¢ is normalized Lips-
chitz continous, i.e., |o(a) — o(b)| < |a — b, with o(0) = 0.

Theorem 2 (Neural network stability). Let M be a manifold
with Laplace-Beltrami operator £. Let f be a manifold signal
and ®(H, L, f) an L-layer manifold neural network on M
(4) with Fy = Fr = 1 input and output features and
F, = Fi = 1,2,...,L — 1 features per layer, and where
the filters h(L) are o-FDT filters [cf. Definition 3]. Consider
an absolute perturbation £ = £ + A of the Laplace-Beltrami
operator £ [cf. Definition 1] where ||A || = € < «. Then, under
Assumptions 1 and 2 it holds:

H(I)(Ha £a f)_i’(H’ ‘Clv f)”

(D + N) (11
("

< LFL=1 +BD> ellf]l.

where D and N are the cardinalities of sets D and N.

Deep neural networks on manifolds are thus also stable to
absolute perturbations provided that the activation function is
normalized Lipschitz. This assumption is satisfied by most
common activation functions, such as the ReLU, the modulus
function and the sigmoid. Here, the same general comments
as in the case of Theorem 1 hold, with the difference that in
Theorem 2 the stability bound also depends on the number of
layers L and the number of features per layer F' of the MNN.

As graphs can be seen as discretizations of manifolds,
therefore we can use graph neural networks to realize the
function of manifold neural networks. Combined with the
transferability analysis from manifolds to graphs, we could
state that the stability result that we have in Theorem 2 can
be extended to graph neural networks.

IV. NUMERICAL EXPERIMENTS

We take a graph neural network model to approximate the
manifold neural network. We verify our results on a graph neu-
ral network supported on a wireless adhoc network with n = 50
nodes within a range of [—50m, 50m]? where nodes are placed
randomly. The channel states of all links can be represented by
a matrix H(¢) with each element [H(¢)];; := h;;(t) denotes
the channel condition between node ¢ and node j. Consider
the large-scale pathloss gain and a random fast fading gain, this
can be written as: h;; = log(d;j2'2h<f ), where d;; stands for the
distance between node i and j, while h/ ~ Rayleigh(2) is the
random fading. We here study the power allocation problem
among n nodes over an AWGN channel with interference,
with p(H) = [p1(H),p2(H), ..., p,(H)] denoting the power
allocated to each node under channel condition H. the channel
rate of node ¢ is represented as r;. The goal is to maximize the
sum rate capacity under a total power budget P,,,,. This can
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Figure 4: Sum-rate difference on the test between the original
wirelss network setting and the perturbed one.

be numerically formulated as:

r* = max T
H
p(H) —

(12)
|hii|*pi (H)
L4+ 37 hil?p(H) | |7
i

pi(H) € {0,po}.

With the nodes and the links seen as the graph nodes and
edges respectively, the channel matrix H can be seen as a
graph shift operator, more specifically, an adjacency matrix.
By formulating H into a Laplacian matrix, the problem can
be solved with a graph neural network composed with our
defined o-FDT filters with « set as 0.001. By setting hy = h;
for |Ax — Aj| < a in (3), we can get an approximation of
a-FDT filters. After trained for 4000 iterations, the graph
neural network can achieve the optimal power allocation. In
physical world, the nodes are deployed in some specific spatial
positions. The positions may change and this would cause
perturbations to the underlying Laplacian matrix. To model
this, we add a log-normal matrix to the original channel matrix
H. With the same trained graph neural network employed, we
measure the stability by the difference of final sum-rate.

We can observe from Figure 4 that the difference of the
final sum-rates increases with the number of layers and the
number of filters per layer in the neural network. This verifies
the conclusion that we have derived in Theorem 2.

st. r,=E |log| 1+

E17p] < Pras,

V. CONCLUSIONS

In this paper, we have defined manifold convolutions and
manifold neural networks. Considering the infinite dimension-
ality of Laplace-Beltrami operators. We import the definition
of a frequency difference threshold filters to help separate the
spectrum. By assigning a constant frequency response to the
eigenvalues that are close enough, a-FDT filters can be proved
to be stable to absolute perturbations to the Laplacian operators.
We further prove that the manifold neural networks built with
a-FDT filters are also stable under absolute perturbations. We
conclude that there is a trade-off between the stability and

discriminability. We further verified our results numerically
with a power allocation problem in wireless adhoc networks.
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