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Abstract—In this paper, we study the generalization capabilities
of graph neural networks (GNNs). We consider the case when
the graph is constructed from a finite set of randomly sampled
points over an embedded manifold while the sampling can be
non-uniform. We construct the graph as relatively sparse which
is a reasonable model in many application scenarios. We prove a
generalization gap between the optimal empirical risk and optimal
statistical risk of this GNN, which increases with the dimension
of the underlying manifold and decreases with the number of
sampled points from the manifold. This generalization gap ensures
that the GNN trained on a graph constructed based on a finite set
of sampled points can be utilized to process other unseen graphs
constructed from the same underlying manifold. The generalization
gap is derived based on the non-asymptotic convergence result
of a GNN on the sampled graph to the underlying manifold
neural networks (MNNs). We verify this theoretical result with
experiments on a citation network.

Index Terms—Graph neural networks, generalization analysis,
manifold neural networks, non-asymptotic convergence

I. INTRODUCTION

Graph structures can describe many modern datasets with
relationships well captured. Convolutional filters and neural
networks on graphs [1]–[4] have become the top choice to
process information over graphs. A graph as a discrete model can
naturally represent a discrete data structure. Examples include
social networks [5], [6], protein structures [7], [8], multi-agent
control [9]. In many practical scenarios, graphs can be seen
as samples from a manifold, approximating the continuous
topological space with finite samples, as in the case of point
clouds [10], data manifolds [11], and irregular space navigation
[12]. Under this context, the graph convolutional filters and
GNNs can be seen as approximations of the counterparts on the
manifold [13], [14]. This implies that convolutional structures
on graphs with finite sample points can capture the underlying
geometry of the manifold.

The main technical contribution of this paper is analyzing
the generalization capabilities of GNNs operated on a sampled
graph from an underlying manifold. We show that GNNs trained
on a graph can be implemented on other unseen graphs sampled
from this manifold. We consider this manifold as a common
underlying structure for the graphs which helps to derive a
generalization bound that decreases with the number of sampled
points.

Formally, we are given a set of N i.i.d. points XN over
an embedded manifold M. Input and target graph signals xN

and yN are sampled from underlying manifold signals. The
goal is to learn a GNN Φ that estimates yN with Φ(H,xN )
where H ∈ H represent the filter parameter set. We use a L2

Supported by Theorinet Simons. The authors are with the Department of
Electrical and Systems Engineering, University of Pennsylvania, Philadelphia,
PA, 19104, USA.

loss function ℓ to measure the estimation performance between
true target yN and the estimated target Φ(xN ). Practically, the
GNN is trained to minimize an empirical risk written as

RE(H) = ℓ(Φ(H,xN ),yN ). (1)

While theoretically, a machine learning algorithm aims to
minimize the statistical risk as

RS(H) = EXN
[ℓ (Φ(H,xN ),yN )] . (2)

The generalization gap is defined to be

GA = min
H∈H

RS(H)− min
H∈H

RE(H). (3)

We analyze this generalization gap by establishing the conver-
gence of GNNs to the neural networks built on the underlying
manifold, which is manifold neural network [13], [15]. Based
on the convergence results, we can prove that the generalization
gap between the finite N training points on the sampled graph
and the true distribution of these N points is small and decreases
with the number of sampled points. The following shows an
informal statement of our main Theorem 1.

Theorem (Informal). Consider a graph constructed on N i.i.d.
randomly sampled points over a d-dimensional manifold M
with respect to the measure µ over the manifold. Then, the
generalization gap of a GNN trained on this graph satisfies
with probability 1− δ that

GA = O

((
logN/δ

N

) 1
d+4

)
. (4)

This shows that the generalization gap decreases approxi-
mately polynomially with respect to the number of points N
while the exponent is related to the dimension of the underlying
manifold. We further attest this theoretical result with a citation
network classification problem, where we can observe that the
order of the decreasing with respect to the number of sampled
points as shown in Figure 1.

In [14], [16]–[19], transferability of GNNs are analyzed by
comparing the output difference of GNNs on different sizes
of graphs when graphs converge to a limit model as manifold
or graphon without generalization analysis. In [20], [21], the
authors show how increasing the size of the graph as the GNN
learns, generalizes to the large-scale graph. In [22], the authors
prove generalization bound of GNNs with VC-dimension which
is commonly used for convolutional neural networks. In [23],
the authors derive a generlization bound for a single layer
GNN based on the stability analysis, with the bound scaling
with the largest eigenvalue of the graph Laplacian. In [24],
the authors provide a generalization bound based on PAC-
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Fig. 1: OBGN-Arxiv accuracy and loss generalization gaps. The GNN is trained over the number of nodes indicated on the
x-axis, and then the generalization gap (difference between the training and loss datasets) is measured, both in terms of the
accuracy, and the loss with which we trained – the cross-entropy loss. As can be seen, in both cases the generalization gap
presents a linear behavior with respect to the logarithm of the number of nodes.

Bayesian analysis with the bound depending on the maximum
degree of the graph and the spectral norms. In [25], the authors
provide a generalization bound on message passing networks
comparable to Rademacher bounds in recurrent neural networks.
The previous generalization gaps scale with the size of graph
without capturing the underlying common structures of the
graphs. A generalization analysis is carried out in [26], [27],
where the graphs are on message-passing neural networks
on graphs that are randomly sampled from a collection of
template random graph models. We study the limit of graphs
as a manifold, which is more realistic in practice and is more
suitable to process high-dimensional data.

The rest of the paper is organized as follows. We start with
preliminary concepts of graph neural networks (GNNs) and
manifold neural networks (MNNs) in Section II. In Section III,
we construct the relatively sparse graphs by sampled points from
the manifold and we present the generalization gap of GNNs
on constructed graphs based on the convergence of GNNs to
the underlying MNN. Our proposed results are verified in a
citation classification problem in Section IV. The conclusions
are presented in Section V.

II. PRELIMINARIES

Let us start with the basic definitions of graph neural networks
and manifold neural networks.

A. Graph Convolutions and Graph Neural Networks

An undirected graph G = (V, E ,W) contains N nodes with
a node set V and edge set E ⊆ V × V . The weights of the
edges are assigned by W : E → R. Graph signals x ∈ RN

map values to each node. A graph shift operator (GSO) [3],
[4] S ∈ Rn×n is a graph matrix with [S]ij ̸= 0 if and only

if (i, j) ∈ E or i = j, e.g., the graph Laplacian L. The GSO
can shift or diffuse signals to each node by aggregating signal
values of neighbors. A graph convolution is defined based on a
consecutive graph shift operation. A graph convolutional filter
hG [1], [2], [4] with filter coefficients {hk}K−1

k=0 is formally
defined as

hG(S)x =

K−1∑
k=0

hkS
kx. (5)

Replacing S with the spectral decomposition in (5), we observe
that the spectral representation of a graph filter is

VHhG(S)x =

K−1∑
k=1

hkΛ
kVHx = h(Λ)VHx. (6)

This leads to a point-wise frequency response of the graph
convolution, which is h(λ) =

∑K−1
k=0 hkλ

k, depending only on
the weights {hk}K−1

k=0 and on the eigenvalues of S.

A graph neural network (GNN) is composed of cascading
layers that each consists of a bank of graph convolutional filters
followed by a point-wise nonlinearity σ : R → R. Specifically,
the l-th layer of a GNN that produces Fl output features
{xp

l }
Fl
p=1 with Fl−1 input features {xq

l−1}
Fl−1

q=1 is written as

xp
l = σ

Fl−1∑
q=1

hlpq
G (S)xq

l−1

 , (7)

for each layer l = 1, 2 · · · , L. The graph filter hlpq
G (S) maps

the q-th feature of layer l − 1 to the p-th feature of layer l as
(5). We denote the GNN like (7) as a mapping ΦG(H,S,x)
for the ease of presentation, where H ∈ H ⊂ RP denotes a set
of the graph filter coefficients at all layers and H denotes the



set of all possible parameter sets.

B. Manifold Convolutions and Manifold Neural Networks
We consider a d-dimensional compact, smooth and differ-

entiable submanifold M embedded in RN. The embedding
induces a probability measure µ over the manifold with density
function ρ : M → (0,∞), which is assumed to be bounded as
0 < ρmin ≤ ρ ≤ ρmax < ∞. Manifold signals [15] are likewise
defined as scalar functions f : M → R. We use L2(M) to
denote L2 functions over M with respect to measure µ. The
inner product of signals f, g ∈ L2(M) is defined as

⟨f, g⟩M =

∫
M

f(x)g(x)dµ(x), (8)

with the L2 norm defined as ∥f∥2M = ⟨f, f⟩M. The manifold
with density is endowed with a weighted Laplace operator [28],
which generalizes the Laplace-Beltrami operator as

Lρf = − 1

2ρ
div(ρ2∇f), (9)

with div the divergence operator of M and ∇ the gradient
operator of M [10], [29]. Manifold shift operation is defined
relying on the Laplace operator Lρ and on the heat diffusion
process over the manifold (see [15] for a detailed exposition).
For a manifold signal f ∈ L2(M), the manifold shift can be
explicitly written as e−Lρf . Analogous to graph convolution,
manifold convolution [15] can be defined in a shift-and-sum
manner as

g(x) = h(Lρ)f(x) =

K−1∑
k=0

hke
−kLρf(x). (10)

Consider the Laplace operator is self-adjoint and positive-
semidefinite and the manifold M is compact, Lρ has real, posi-
tive and discrete eigenvalues {λi}∞i=1, written as Lρϕi = λiϕi

where ϕi is the eigenfunction associated with eigenvalue λi. The
eigenvalues are ordered in increasing order as 0 < λ1 ≤ λ2 ≤
λ3 ≤ . . ., and the eigenfunctions are orthonormal and form an
eigenbasis of L2(M). When mapping a manifold signal onto
the eigenbasis [f̂ ]i = ⟨f,ϕi⟩L2(M) =

∫
M f(x)ϕi(x)dµ(x), the

manifold convolution can be written in the spectral domain as

[ĝ]i =

K−1∑
k=0

hke
−kλi [f̂ ]i. (11)

Hence, the frequency response of manifold filter is given by
ĥ(λ) =

∑K−1
k=0 hke

−kλ, depending only on the filter coefficients
hk and eigenvalues of Lρ.

Manifold neural network (MNN) is built by cascading L
layers, each of which consists of a bank of manifold filters and
a pointwise nonlinearity σ. Each layer l = 1, 2 · · · , L can be
explicitly denoted as

fp
l (x) = σ

Fl−1∑
q=1

hpq
l (Lρ)f

q
l−1(x)

 , (12)

where fq
l−1 is an input feature and fp

l , 1 ≤ p ≤ Fl is a an
output feature. In each layer manifold filters maps Fl−1 input

features to Fl output features. To represent the MNN succinctly,
we group all learnable parametes, and we denote the mapping
as Φ(H,Lρ, f), where H ∈ H ⊂ RP is a filter parameter set
of the manifold filters.

III. CONVERGENCE AND GENERALIZATION ANALYSIS OF
GNNS VIA MNNS

Suppose we are given an embedded manifold M ⊂ RN

with input manifold signal f ∈ L2(M) and target manifold
signal g ∈ L2(M) attached to it. An MNN, as defined in (12),
predicts the target signal with Φ(H,Lρ, f) where H ∈ H ⊂ RP

is the set of filter coefficients, Lρ is the weighted Laplacian
defined in (9) and f the input manifold signal. A positive
loss function is denoted as ℓ(Φ(H,Lρ, f), g) to measure the
estimation performance.

Practically, it is normal to access the underlying topological
space by sampling discrete points over the continuous domain.
Suppose we are given pairs of graph signals and graphs
(xN ,GN ) along with target output graph signals yN ∈ RN .
Graph GN is constructed based on a set of N i.i.d. randomly
sampled points XN = {x1

N , x2
N , · · · , xN

N} according to measure
µ over the underlying manifold M. These N sampled points
are seen as nodes. Further, every pair of nodes (xi

N , xj
N ) is

connected by an edge with weight value [WN ]ij ,WN ∈ RN×N

determined by a function Kϵ of their Euclidean distance [30],
which is explicitly written as

[Wm]ij = Kϵ(x
i
N , xj

N ) =
αd

(d+ 2)Nϵd+2
1

(
|xi

N − xj
N |

ϵ

)
,

(13)
where αd is the volume of the d-dimensional Euclidean unit
ball and 1 stands for a characteristic function. Graph input and
target output signals xN ,yN ∈ RN are supported on sampled
points XN belonging to L2(XN ), whose values are sampled
from manifold input signal f and target signal g respectively,
written explicitly as

[xN ]i = f(xi
N ), [yN ]i = g(xi

N ). (14)

We define a sampling operator PN : L2(M) → L2(XN ) to
represent this mapping. As introduced in Sec. II, we denote
a GNN mapping as Φ(H,LN ,xN ), where H ∈ H ⊂ RP

is the set of filter coefficients, LN = diag(WN1) −WN as
the graph Laplacian which is implemented as a GSO, xN as
the input graph signal. A positive loss function is denoted as
ℓ(Φ(H,LN ,xN ),yN ) to measure the estimation performance.

A. Convergence of GNNs to MNNs

We first show that the difference between the outputs of MNN
Φ(H,Lρ, f) and the GNN on the sampled graph with N nodes
Φ(H,LN ,xN ) can be bounded, with the bound decreasing
with the number of the nodes sampled from the manifold.

Suppose the input manifold signal f is λM bandlimited,
which is explicitly defined as follows.

Definition 1. A manifold signal f is λM bandlimited if for
all eigenpairs {λi,ϕi}∞i=1 of the weighted Laplacian Lρ when
λi > λM , we have ⟨f,ϕi⟩M = 0.



We denote M as the cardinality of the limited spectrum of
Lρ, i.e. M = #{λi < λM}. We also need to put an assumption
on the frequency response function of the filters as follows.

Definition 2. A filter is a low pass filter if its frequency response
satisfies ∣∣∣ĥ(a)∣∣∣ = O

(
a−d

)
, a ∈ (0,∞). (15)

For the nonlinearity functions utilized in the GNNs, we need
to make the following assumption.

Assumption 1. (Normalized Lipschitz nonlinearity) The nonlin-
earity σ is normalized Lipschitz continuous, i.e., |σ(a)−σ(b)| ≤
|a− b|, with σ(0) = 0.

We note that this assumption is reasonable considering most
common activation functions are normalized Lipschitz, such as
ReLU, modulus and sigmoid.

With the low-pass filters and normalized Lipschitz nonlin-
earities in both the GNN and MNN, we are ready to prove a
difference bound between the outputs of a GNN operating on
a sampled graph over M and the outputs of an MNN on M.

Proposition 1. Let M ⊂ RN be an embedded manifold with
weighted Laplace operator Lρ and a λM -bandlimited manifold
signal f . Consider a pair of graph and graph signal (xN ,GN )
with N nodes sampled i.i.d. with measure µ over M. The graph
Laplacian LN is calculated based on (13). Let Φ(H,Lρ, ·)
be a single layer MNN on M (12) with single input and
output features. Let Φ(H,LN , ·) be the GNN with the same
architecture applied to the graph GN . Then, with the filters as
low-pass and nonlinearities as normalized Lipschitz continuous,
it holds in probability at least 1− δ that

∥Φ(H,LN ,PNf)−PNΦ(H,Lρ, f)∥2 ≤

C1

(
log C1N

δ

N

) 1
d+4

+ C2

(
log C1N

δ

N

) 1
d+4

θ−1
M

+ C3

√
log(1/δ)

N
+ C4M

−1, (16)

where C1, C2, C3 and C4 are constants defined in Appendix A
and θM = mini=1,2··· ,M |λi − λi+1|.

Corollary 1. The difference of the L-layer GNN Φ(H,LN , ·) on
a graph GN sampled from the manifold and MNN Φ(H,Lρ, ·)
converges to zero as N goes to infinity.

Proof. We denote the four terms in (16) as A1(N), A2(M,N),
A3(N) and A4(M). For every δ > 0, we can choose some M0

such at A4(M0) < δ/2. There exists some n0 such that for all
N > n0, A1(N)+A2(M0, N)+A3(N) < δ/2. Therefore, this
satisfies the definition of the convergence, which implies that
for every δ > 0, there exists some n0 so that for all N > n0,
we have A1(N) +A2(M0, N) +A3(N) +A4(M0) < δ.

Proposition 1 shows that the output difference of GNN on
the sampled graph and the underlying MNN is bounded in
high probability with the bound decreasing with the number of
sampled points, i.e. the number of nodes in the graph. Even as

the spectrum becomes larger, there always exists some N large
enough to make the difference goes to zero as N increases. This
attest the convergence of GNN on the sampled graph to MNN.
With this bound holding in high probability, we can naturally
derive the difference bound in expectation of N randomly
sampled points as follows.

Corollary 2. The difference bound between GNN and MNN
also holds in expectation since each node in XN is sampled
i.i.d. according to measure µ over M

E
XN∼µN

[∥Φ(H,LN ,PNf)−PNΦ(H,Lρ, f)∥2] ≤ (17)

C ′N− 1
d+4 + C ′′N− 1

2 + C ′′′
(
logN

N

) 1
d+4

+ M̄e−N/C
√
N,

where C ′, C ′′, C ′′′ and M̄ are specified in Appendix B.

We can observe that the output difference decreases with
the number of nodes sampled from the underlying manifold,
while increasing with the manifold dimension, i.e. the model
complexity.

B. Generalization of GNNs

Suppose a GNN is trained over the given graph and graph
signals xN ,GN . The training intends to minimize the empirical
risk defined as

P ∗
E = min

H∈H
RE(H) := ℓ(Φ(H,LN ,xN ),yN ). (18)

Given the fact that we only have access to a training set with
limited training samples and not the underlying probability
distribution µ, nor the manifold M, we can only aim to
minimize the empirical risk in practice. Substantially, the goal
of the GNN is to minimize the statistical risk, i.e.

P ∗
S = min

H∈H
RS(H) := EXN

[ℓ (Φ(H,LN ,xN ),yN )] . (19)

where the expectation is taken with respect to N randomly
sampled points XN ∼ µN .

The generalization gap of GNN is defined to be

GA = P ∗
S − P ∗

E , (20)

which measures the difference between the optimal empirical
risk and the optimal statistical risk of the GNN. Based on the
convergence results that we have derived, we can bound the
generalization gap as the following theorem.

Theorem 1. The Generalization Gap of GNN trained on
(xN ,GN ) is bounded in probability at least 1− δ that,

GA = O

( log N
δ

N

) 1
d+4

+

(
logN

N

) 1
d+4

 . (21)

We observe that the generalization gap decreases with
the number of sampled points over the manifold N . The
restriction put on the graphs that they are sampled from the
same underlying manifold makes the GNN generalize better
without depending on the VC dimension and Rademacher



Layers Hidden Units Pearson Correlation p-value
1 64 −0.50140 0.11612
1 128 −0.50263 0.11508
1 256 −0.50932 0.10955
1 512 −0.49895 0.11820

2 64 −0.69724 0.01709
2 128 −0.75542 0.00718
2 256 −0.80591 0.00274
2 512 −0.83898 0.00124

3 64 −0.70005 0.01646
3 128 −0.76771 0.00580
3 256 −0.82561 0.00175
3 512 −0.86436 0.00060

4 64 −0.69280 0.01811
4 128 −0.76440 0.00615
4 256 −0.84140 0.00117
4 512 −0.87543 0.00041

TABLE I: Pearson Correlation index and associated p-value for
generalization error over the cross-entropy loss.

Layers Hidden Units Pearson Correlation p-value
1 64 0.52974 0.09374
1 128 0.53093 0.09287
1 256 0.54261 0.08459
1 512 0.52894 0.09433

2 64 0.71715 0.01299
2 128 0.77199 0.00537
2 256 0.82032 0.00198
2 512 0.84979 0.00093

3 64 0.71547 0.01331
3 128 0.77802 0.00481
3 256 0.82619 0.00172
3 512 0.86104 0.00066

4 64 0.70317 0.01578
4 128 0.77362 0.00521
4 256 0.84437 0.00108
4 512 0.87329 0.00045

TABLE II: Pearson Correlation index and associated p-value
for generalization error over the accuracy.

complexity. Furthermore, the generalization gap increases with
the dimension d, which represents the complexity of the
underlying manifold. That is to say, for a high-complexity
manifold model, we can sample more points over this manifold
to build a graph, on which the GNN can achieve a small
generalization gap.

IV. SIMULATIONS

We consider an experiment to showcase the generalization
capabilities of Graph Neural Networks. To do so, we trained a
GNN on a subset of nodes, and measured the generalization gap
as a function of the number of nodes in the graph. We conducted

experiments in a real-world dataset called OGBN-Arxiv [31].
OGBN-Arxiv graph has 169, 343 nodes and 1, 166, 243 edges
and it represents the citation network between computer science
arXiv papers. Each node is a paper, and the graph signals at
each node are 128 dimensional embeddings of the title and
abstract of each paper [32]. The graph labels yi are one of the
40 categories the paper belongs to.

We trained a GNN using the graph convolution layer, and relu
as the non-linearity. We used trained using {1, 2, 3, 4} layers,
and {64, 128, 256, 512} hidden units. In all cases, we run each
experiment for 1000 epochs, using 10 different seeds. On the
optimization side, we trained using a learning rate of 0.005. To
train we used the cross-entropy loss.

As can be seen in Figure 3d, both in terms of the cross-
entropy loss 1b, as well as the accuracy 1a, the generalization
gap shows a linear behavior with the logarithm of the number
of nodes in the training graph. This finding can be formalized
by looking at the Pearson correlation index in Tables II, and
I. The Pearson correlation index is a number between ˘1 and
1 that measures the linearity of two variables, in this case the
logarithm of the number of nodes, and the generalization gap.
The closer the magnitude of the Pearson correlation index is
to 1, the stronger the linear relationship is. For GNNs with
more than one layer, the Pearson correlation index is above 0.7,
showing a strong linear correlation. This validates the claims
that we put forward.

We can also look at the loss and accuracy as a number of
features in the convolution. In Figure 4, we plot the training
and testing losses, and accuracies as a function of the number
of layers, and inner features of the GNN. There are two clear
patterns, the one layer GNN and more than one layer. In the
case of one layer, the GNN is unable to overfit the training set,
whereas in the GNNs with more convolutional layers, the GNN
is able to overfit the training set with a small number of nodes
on it. The second salient difference between these two is the
learning behavior when the width of the GNN increases. With
one convolutional layer, the width is almost irrelevant, which
is not the case in the other 3 experiments. This shows that one
layer GNNs are unable to learn properly, even when the width
of the GNN increases. This is not the case in {2, 3, 4} layer
GNNs. In this case, as the number of hidden units increases,
so does the training accuracy. That is to say, if the number of
hidden units is larger, the accuracy drop as the number of nodes
in the training set increases is slower. However, more hidden
units, does not necessarily mean better accuracy in the test set.

In all, we validated the claim that the generalization gap
increases linearly with the logarithm of the number of nodes
in the training graph.

V. CONCLUSION

In this paper, we implement the manifold convolutional neural
networks as a limit model for graph neural networks when
graphs are sampled from this manifold. With graph constructed
with the i.i.d. randomly sampled points over the manifold,
we can prove the GNN converges to the MNN with a non-
asymptotic rate both in probability and in expectation. Based
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Fig. 3: OBGN-Arxiv training and testing losses for {1, 2, 3, 4} layers.
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Fig. 4: OBGN-Arxiv training and testing accuracies for {1, 2, 3, 4} layers.

on these convergence results, we prove the generalization gap
of the GNN over finite training samples and the real distribution.
We show that the generalization gap decreases with the number
of sampled points while increases with the manifold dimension.
We finally verify our convergence and generalization results
numerically with a citation classification problem.
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APPENDIX

A. Proof of Proposition 1

Proposition 2. [30, Theorem 2.4, Theorem 2.6] Let M ⊂ RN

be equipped with LB operator L, whose eigendecomposi-
tion is given by {λi,ϕi}∞i=1. Let LN be the discrete graph
Laplacian of graph weights defined as (13), with spectrum
{λi,N ,ϕi,N}Ni=1. Fix K ∈ N+ and assume that ϵ = ϵ(N) ≥
(log(CN/δ)/N)

1/(d+4) Then, with probability at least 1 − δ,
we have

|λi − λi,N | ≤ CM,1λiϵ, ∥aiϕi,N − ϕi∥ ≤ CM,2
λi

θi
ϵ, (22)

with ai ∈ {−1, 1} for all i < K and θ the eigengap of L, i.e.,
θi = min{λi − λi−1, λi+1 − λi}. The constants CM,1, CM,2

depend on d and the volume of M.

The inner product of signals f, g ∈ L2(M) is defined as

⟨f, g⟩M =

∫
M

f(x)g(x)dµ(x), (23)

where dµ(x) is the volume element with respect to the measure
µ over M. Similarly, the norm of the manifold signal f is

∥f∥2M = ⟨f, f⟩M. (24)

Because {x1, x2, · · · , xN} is a set of randomly sampled points
from M, based on Theorem 19 in [33] we can claim that

|⟨PNf,ϕi⟩ − ⟨f,ϕi⟩M| = O

(√
log(1/δ)

N

)
. (25)

This also indicates that∣∣∥PNf∥2 − ∥f∥2M
∣∣ = O

(√
log(1/δ)

N

)
, (26)

which indicates ∥PNf∥ = ∥f∥M +O((log(1/δ)/N)1/4). We
first write out the filter representation as

∥h(LN )PNf −PNh(Lρ)f∥ ≤∥∥∥∥∥
N∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥
(27)

≤

∥∥∥∥∥
M∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨PNf,ϕi⟩Mϕi

+

N∑
i=M+1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ (28)

≤

∥∥∥∥∥
M∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨PNf,ϕi⟩Mϕi

∥∥∥∥∥
+

∥∥∥∥∥
N∑

i=M+1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ (29)

The first part of (29) can be decomposed as∥∥∥∥∥
M∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥
≤

∥∥∥∥∥
M∑
i=1

(
ĥ(λi,N )− ĥ(λi)

)
⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥
+

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥ . (30)

In equation (30), the first part relies on the difference of
eigenvalues and the second part depends on the eigenvector
difference. The square of the first term in (30) is bounded as∥∥∥∥∥

M∑
i=1

(ĥ(λi,n)− ĥ(λi))⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥
≤

M∑
i=1

∣∣∣ĥ(λi,N )− ĥ(λi)
∣∣∣ |⟨PNf,ϕi,N ⟩| (31)

≤ ∥PNf∥
M∑
i=1

CM,1ϵλ
−d
i ≤ ∥PNf∥CM,1ϵ

M∑
i=1

i−2 (32)

≤

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
CM,1ϵ

π2

6
:= A1(N) (33)

In (32), we implement Weyl’s law [34] which indicates that



eigenvalues of Laplace operator scales with the order of i2/d.
The last inequality comes from the fact that

∑∞
i=1 i

−2 = π2

6 .
The second term in (30) can be bounded combined with the
convergence of eigenfunctions as∥∥∥∥∥

M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨PNf,ϕi,N ⟩PNϕi)

∥∥∥∥∥
+

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥ (34)

The first term in (34) can be bounded as∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨PNf,ϕi,N ⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

∣∣∣ĥ(λi)
∣∣∣ ∥PNf∥∥ϕi,N −PNϕi∥ (35)

≤
M∑
i=1

(λ−d
i )

CM,2ϵ

θi

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(36)

≤ CM,2ϵ
π2

6
max

i=1,··· ,M
θ−1
i

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(37)

:= A2(M,N). (38)

The last equation comes from the definition of norm in L2(XN ).
The second term in (34) can be written as∥∥∥∥∥

M∑
i=1

ĥ(λi,N )(⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

∣∣∣ĥ(λi,N )
∣∣∣ |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M| ∥PNϕi∥ (39)

≤
M∑
i=1

(λ−d
i )

√
log(1/δ)

N

(
1 +

(
log(1/δ)

N

) 1
4

)
(40)

≤ π2

6

√
log(1/δ)

N

(
1 +

(
log(1/δ)

N

) 1
4

)
:= A3(N) (41)

The second term in (29) can be bounded as∥∥∥∥∥
N∑

i=M+1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥
≤

N∑
i=M+1

(λ−d
i,N )

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(42)

≤
∞∑

i=M+1

(λ−d
i,N )∥f∥M (43)

≤ (1 + CM,1ϵ)
−d

∞∑
i=M+1

(λ−d
i )∥f∥M (44)

≤ M−1∥f∥M := A4(M). (45)

We note that the bound is made up by terms A1(N) +
A2(M,N) + A3(N) + A4(M), related to the bandwidth of
manifold signal M and the number of sampled points N . As ϵ

scales with the order
(

log(CN/δ)
N

) 1
d+4

. This makes the bound
scale with the order

∥h(LN )PNf −PNh(Lρ)f∥

≤ C1

(
log C1N

δ

N

) 1
d+4

+ C2

(
log C1N

δ

N

) 1
d+4

θ−1
M

+ C3

√
log(1/δ)

N
+ C4M

−1, (46)

with C1 = CM,1
π2

6 ∥f∥M, C2 = CM,2
π2

6 , C3 = π2

6 and
C4 = ∥f∥M. As N goes to infinity, for every δ > 0, there exists
some M0, such that for all M > M0 it holds that A4(M) ≤ δ/2.
There also exists n0, such that for all N > n0, it holds that
A1(N) + A2(M0, N) + A3(N) ≤ δ/2. We can conclude that
the summations converge as N goes to infinity.

B. Proof of Corollary 2
We focus on deriving this expectation depending on the

difference bound in probability in (16). We denote ŷN =
Φ(H,LN ,PNf) and ĝ = Φ(H,Lρ, f). We have

P

(
∥ŷN −PN ĝ∥ ≤ (C1 + C2θM )N− 1

d+4

(
log

1

δ

) 1
d+4

+ C4M
−1

+ (C1 + C2θM )

(
logN

N

) 1
d+4

+ C3N
− 1

2

√
log

1

δ

)
≥ 1− 2δ,

(47)

with N ≥ log C
δ . We denote k2 = log 1/δ, i.e. δ = e−k2

.
Decomposing the expectation, we have

E[∥ŷN −PN ĝ∥2] ≤

√
N/C2∑
k=0

P

(
(C1 + C2θM ))N− 1

d+4 k
2

d+4+

C3N
− 1

2 k + (C1 + C2θM )

(
logN

N

) 1
d+4

+ C4M
−1 ≤ ∥ŷN −PN ĝ∥

≤ (C1 + C2θM )N− 1
d+4 (k + 1)

2
d+4 + C3N

− 1
2 (k + 1) + C4M

−1

+ (C1 + C2θM )

(
logN

N

) 1
d+4

)(
(C1 + C2θM )N− 1

d+4 (k + 1)
2

d+4

+ (C1 + C2θM )

(
logN

N

) 1
d+4

+ C3N
− 1

2 (k + 1) + C4M
−1

)
+

∞∑
k=

√
N/C2

P

(
(C1 + C2θM ))N− 1

d+4 k
2

d+4 + C3N
− 1

2 k + C4M
−1

+ (C1 + C2θM )

(
logN

N

) 1
d+4

≤ ∥ŷN −PN ĝ∥2 ≤ C4M
−1+

(C1 + C2θM )N− 1
d+4 (k + 1)

2
d+4 + C3N

− 1
2 (k + 1)+

(C1 + C2θM )

(
logN

N

) 1
d+4

)
M̄,



The upper bound of ∥ŷN −PN ĝ∥2 can be derived with the
norm of the output function of GNN when the GNN contains
a single layer

∥ŷN −PN ĝ∥2 ≤ ∥Φ(H,L,PNf)∥2 + ∥PNΦ(H,L, f)∥2
(48)

≤ 2∥PNf∥2. (49)

Therefore the probability is zero when (C1+C2θM )N− 1
d+4 (k+

1)
2

d+4 + C3N
− 1

2 (k + 1) > M̄ = 2∥PNf∥2, i.e. k >
√
NM̄ .

Then we have

EN
µ [∥ŷN −PN ĝ∥2]

≤

√
N/C∑
k=0

2e−k2

(
(C1 + C2θM )N− 1

d+4 (k + 1)
2

d+4+

(C1 + C2θM )

(
logN

N

) 1
d+4

+ C3N
− 1

2 (k + 1) + C4M
−1

)

+

√
NM̄∑

k=
√

N/C

M̄2e−N/C (50)

≤ C ′N− 1
d+4 + C ′′N− 1

2 + C ′′′
(
logN

N

) 1
d+4

+ M̄2e−N/C
√
N

(51)

C. Proof of Theorem 1

Suppose HE ∈ argminH∈H RE(H), we have

GA ≤ RS(HE)−RE(HE), (52)
= EXN∼µN [ℓ (Φ(HE ,xN ),yN )]− ℓ(Φ(HE ,xN ),yN )

(53)

We can now add and subtract ℓ(Φ(HE ,L, f), g), as follows

GA ≤
(
EXN∼µN [ℓ (Φ(HE ,xN ),yN )]− ℓ(Φ(HE ,L, f), g)

)
+ (ℓ(Φ(HE ,L, f), g)− ℓ(Φ(HE ,xN ),yN )) (54)

As we consider the L2 loss function, therefore, by Cauchy-
Schwartz we have,

GA ≤

∣∣∣∣∣EXN∼µN [ℓ (Φ(HE ,xN ),yN )]− ℓ(Φ(HE ,L, f), g)

∣∣∣∣∣︸ ︷︷ ︸
LHS

+

∣∣∣∣∣ℓ(Φ(HE ,L, f), g)− ℓ(Φ(HE ,xN ),yN )

∣∣∣∣∣︸ ︷︷ ︸
RHS

.

(55)

We assume the loss function to be L2 loss. The LHS in (55)
can be decomposed as∣∣ℓ(Φ(HE ,L, f), g)− EXN∼µN [ℓ (Φ(HE ,xN ),yN )]

∣∣
=
∣∣∥Φ(HE ,L, f)− g∥M − EµN [∥Φ(HE ,xN )− yN∥2]

∣∣
(56)

≤
∣∣∣EµN [∥Φ(HE ,xN )−PNΦ(HE ,L, f)∥2]+ (57)

Eµ[∥PNΦ(HE ,L, f)−PNg∥2]− ∥Φ(HE ,L, f)− g∥M
∣∣∣

= EµN [∥Φ(HE ,xN )−PNΦ(HE ,L, f)∥2], (58)

which is the conclusion in Corollary 2.
For the RHS in (55), we have∣∣∣ℓ(Φ(HE ,xN ),yN )− ℓ(Φ(HE ,L, f), g)

∣∣∣
≤
∣∣∣∥Φ(HE ,xN )−PNg∥2 − ∥Φ(HE ,L, f)− g∥M

∣∣∣ (59)

≤
∣∣∣∥Φ(HE ,xN )−PNΦ(HE ,L, f)∥2+

∥PNΦ(HE ,L, f)−PNg∥2 − ∥Φ(HE ,L, f)− g∥M
∣∣∣

(60)
≤ ∥Φ(HE ,xN )−PNΦ(HE ,L, f)∥2+∣∣∣∥PN (Φ(HE ,L, f)− g)∥2 − ∥Φ(HE ,L, f)− g∥M

∣∣∣ (61)

≤ ∥Φ(HE ,xN )−PNΦ(HE ,L, f)∥2 +O

(√
log(1/δ)

N

)
.

(62)

The first part in (62) is bounded by Proposition 1. Combining
these two parts, we can achieve the conclusion that

GA = O

( log N
δ

N

) 1
d+4

+

(
logN

N

) 1
d+4

 . (63)
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