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Abstract—In this paper we study the connection between
graph filters, graph neural networks (GNNs) and manifold filters,
manifold neural networks (MNNs). Specifically, we consider the
case when we have access to a set of uniformly sampled points
from the manifold based on which we construct a relatively sparse
graph to approximate the manifold, which is a suitable model
for many real world applications. We prove a non-asymptotic
approximation error bound or convergence rate for the graph
filters and the GNNs on the relatively sparse graphs to the filters
and neural networks on the manifold that the graphs are sampled
from. An interesting trade-off between the convergence and the
discriminability of the graph filters can be observed from the
non-asymptotic error bound which indicates that graph filters
cannot give good convergence and discriminability at the same
time. While the nonlinearity function in GNNs can alleviate this
trade-off and allows the GNNs to both converge to the MNNs
and discriminate well. Equipped with this non-asymptotic error
bound, we further interpret the transferability property of GNNs
when the graphs are sampled from a common manifold. We verify
our conclusions with a point-cloud classification problem.

Index Terms—Graph neural networks, manifold convolution,
manifold neural networks, relatively sparse graphs, convergence
rate, transferability analysis

I. INTRODUCTION

Modern signal processing now has shown increasing interest
in data supported on geometric structures in non-Euclidean
domains. This is motivated by a large number of applications,
including but not limited to robot flocking [1], [2], molecular
representations [3], [4], 3D shape analysis [5], [6] and wireless
resource allocation [7], [8]. Graphs and manifolds are most
commonly used to model the data structures in non-Euclidean
domains [9]. Convolutional filters and convolutional neural
networks, as the standard invariant and stable information
processing tools which also allow feature sharings [10], have
been established soundly on graphs as well as manifolds. Graph
convolutional filters [11], [12], graph neural networks (GNNs)
[13]–[15] together with manifold convolutional filters [16], [17]
and manifold neural networks (MNNs) [18], [19] are therefore
the prominent choices for non-Euclidean information processing
in discrete and continuous domains respectively.

The relationship between graphs and manifolds have been
studied which claims that graphs can be seen as discretizations
of the manifolds if the graphs have a well-defined limit [9],
[20]. Manifolds, as continuous latent spaces, are often accessed
by a set of discrete sampled points over the manifolds [6], [16],
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[19]. Based on these sampled points, a graph model can be
built involving the local and global geometric information to
give an approximation to the underlying manifold [19], [21].
Recent works have proved that convolutional filters and neural
networks on the graphs sampled from the manifold converge
to the manifold filters and MNNs both experimentally [9], [19]
and theoretically with an asymptotic convergence result [19].

In this paper we focus on proposing a non-asymptotic
convergence result to measure the approximation error between
graph filters and GNNs on sampled graphs from the underlying
manifold to the manifold filters and MNNs. Especially, the
sampled graphs are constructed as random geometric graphs
[22] where only nodes that are close enough are connected
with edges, which makes the graph model more realistic. Plus,
finite-sample error bounds can help determine the design and
the number of sampled points needed of the sampled graphs
while satisfying a given approximation error tolerance. The
non-asymptotic approximation error bounds can also reveal
some phenomena in the convergence regime which cannot be
observed from the asymptotic counterparts, e.g. convergence
rates, convergence trade-offs and the transferability property.

To close the gap between GNNs and MNNs, we start with
the introductions of graph signal processing and GNNs along
with manifold signal processing and MNNs. We employ the
manifold convolutional filter defined as the integration of the
Laplace-Beltrami (LB) operator exponentials which has been
proved consistent with the graph convolutional filter and the
standard time convolutional filter [17]. We then describe how to
build a relatively sparse graph based on the sampled points from
the underlying manifold and propose that the constructed graph
Laplacian can approximate the LB operator of the manifold in
both the operator and spectral aspects (Proposition 1 and 2).
We present the approximation error bound (or the convergence
rate) of the graph filters on the constructed relatively sparse
graph to the manifold filters in Theorem 1 under certain
assumptions, from where we can observe a trade-off between
the convergence rate and the discriminability of the graph filter.
The approximation error bound is derived similarly for GNNs by
cascading graph filters with nonlinearities, which help alleviate
the trade-off and enable GNNs to both converge and discriminate
well. The transferability property for GNNs on different sampled
graphs from the same underlying manifold can also be analyzed
based on the non-asymptotic convergence result, which we also
verify empirically with numerical experiments.

GNNs have been comprehensively discussed in many works
[12]–[14]. The convergence and transferability of GNNs have
been analyzed with the graphon model as the limit of a



sequence of graphs [23]–[26]. Our paper instead sees the limit
of large graphs as a manifold, which is more intuitive and
general compared with the graphon model. In [19], a two-way
connection between GNNs and MNNs are established, which
states that MNNs can recover GNNs by discretizing in space and
time domains, and GNNs converge to MNNs asymptotically
as the size of the graph increases. However, there lacks an
explicit convergence rate. In [27], a convergence rate is stated
for the GNNs when approximating MNNs, but the conclusion
is restrained to input signals within a limited bandwidth. Plus
the graphs constructed in [19] and [27] still need to be dense
graphs. In our work, we lift the bandlimited assumption of the
input signals by importing a frequency dependent filter and we
put our focus on building a relatively sparse graph which is a
more practical model.

The rest of the paper is organized as follows. We start with
preliminary concepts of graph signal processing and manifold
signal processing in Section II. We construct the relatively
sparse graphs by sampled points from the manifold in Section
III. In Section IV, we present the approximation error bounds
of graph filters and GNNs on the relatively sparse graphs to the
manifold filters and MNNs respectively. Our proposed results
are verified in a model classification problem in Section V. The
conclusions are presented in Section VI.

II. PRELIMINARIES

We begin by revising the basic concepts of graph signal pro-
cessing, graph neural networks and manifold signal processing,
manifold neural networks.

A. Graph Signal Processing and Graph Neural Networks

Let G be an undirected graph with n nodes. Graph signals
x ∈ Rn are data supported on the nodes of the graph. The edge
weights are given by a weight function with which we can
get the matrix representation or Graph Shift Operator (GSO)
S of graph G (i.e. adjacency matrix, Laplacian matrix) [11],
[28]. The graph convolution is defined as the summation of the
iterative graph diffusion process [11], [12]. It can be written
explicitly as the polynomial of the GSO as

y = hG(S)x =

K−1∑
k=0

hkS
kx. (1)

Considering the case of an undirected graph, the GSO is symmet-
ric and admits an eigenvector decomposition as S = VΛVH ,
with orthogonal eigenvector matrix V ∈ Rn×n and diagonal
eigenvalue matrix Λ ∈ Rn×n. Suppose the diagonal eigenvalue
entries are ordered as λ1 ≤ λ2 . . . ≤ λn. By projecting the
graph filter output on the eigenvector matrix, we can write the
spectral representation of the graph convolutional filter, which
is explicitly denoted as

VHy = VHhG(S)x =

K−1∑
k=1

hkΛ
kVHx = ĥ(Λ)VHx. (2)

The frequency response of the graph convolution can be
defined as ĥ(λ) =

∑K−1
k=0 hkλ

k, which relates the frequency

components of input and output graph signals point-wisely, with
a full dependence on the filter coefficients {hk}K−1

k=1 and the
eigenvalues of S.

A graph neural network (GNN) is composed of layers of
graph filter banks followed by a nonlinearity function σ : R →
R. In the l-th layer of a GNN, the filters produce Fl features
xp
l , which can be written explicitly as

xp
l = σ

Fl−1∑
q=1

hlpq
G (S)xq

l−1

 , (3)

for every 1 ≤ q ≤ Fl−1, 1 ≤ p ≤ Fl. The number of features in
each layer l = 1, 2 . . . , L is denoted as Fl. The graph filter hlpq

G

is as (1) defined which maps the q-th feature in the l−1-th layer
to the p-th feature in the l-th layer. To simplify the presentation,
we denote the GNN composed of L layers with (3) as a map
ΦG(H,S,x), where H includes all the graph filter coefficients
across all the layers.

B. Manifold Signal Processing and Manifold Neural Networks

We consider a d-dimensional compact, smooth and differen-
tiable embedded manifold M ∈ RN with measure µ. Manifold
signals are scalar functions supported over M as f : M → R
[16], [17]. The local Euclidean space around each point x ∈ M
is called tangent space and the disjoint union of all these tangent
spaces over M is defined as tangent bundle TM. The Laplace-
Beltrami (LB) operator L : L2(M) → L2(M) is defined as
the intrinsic divergence of the intrinsic gradient of the scalar
functions over M, which can be explicitly written as

Lf = −div ◦ ∇f. (4)

Like graph Laplacians [29], this LB operator measures the
difference between the function value at some point and the
average value around this point [9].

Manifold convolution can be defined as the integration of
a heat diffusion process over the manifold [17]. This way of
defining the manifold convolution has been proved consistent
with the graph convolution and standard time convolution [19]
which enables us to connect graphs and manifolds. With h̃ :
R+ → R denoted the filter impulse function, the manifold
convolutional filter can be written as

g(x) =

∫ ∞

0

h̃(t)e−tLf(x)dt = h(L)f(x). (5)

Considering that the LB operator is self-adjoint and positive-
semidefinite, it has real and positive eigenvalues. Plus the
compactness of M, the LB operator possesses discrete spectrum,
which can be denoted as pairs of eigenvalues and eigenfunctions
{λi,ϕi}∞i=1 with the order λ1 ≤ λ2 ≤ λ3 . . .. By projecting
the output of the manifold convolution onto the eigenfunction
ϕi, we can get the spectral representation as

[ĝ]i =

∫ ∞

0

h̃(t)e−tλidt[f̂ ]i = ĥ(λi)[f̂ ]i, (6)

where [f̂ ]i =
∫
M f(x)ϕi(x)dµ(x) is the frequency component

of function f . Therefore, we can see the filter frequency response



is point-wise on each frequency component which can be
represented as ĥ(λ) =

∫∞
0

h̃(t)e−tλdt. With the function can
be represented on the eigenfunction basis as g =

∑∞
i=1[ĝ]iϕi,

the spectral representation of the manifold filter is

g =

∞∑
i=1

[ĝ]iϕi =

∞∑
i=1

ĥ(λi)[f̂ ]iϕi. (7)

Similar to graph convolutions, the manifold filter frequency
response also fully depends on the filter impulse function and
the eigenvalues of the LB operator.

A manifold neural network (MNN) can be likewise defined
as a the cascading layers of manifold filter banks point-wise
non-linearities σ : R → R. The output of the l-th layer can be
explicitly written as

fp
l (x) = σ

Fl−1∑
q=1

hpq
l (L)fq

l−1(x)

 , (8)

where fp
l , 1 ≤ p ≤ Fl is the p-th feature in the l-th layer. The

manifold filter hpq
l in the l-th layer maps Fl−1 input features to

Fl output features. To be more concise, we denote the MNN as
Φ(H,L, f) where the function set H includes all the impulse
response functions of the manifold filters hpq

l of all layers.

III. SPARSE GRAPH CONSTRUCTION FROM MANIFOLDS

We can access a continuous manifold M by processing a set
of discrete uniformly sampled points from M. By connecting
these sampled points as a graph, we can get an approximation
of the underlying manifold. With the sampled points seen
as the nodes of the graph, the weight values of the edges
connecting the nodes are defined based on the Euclidean distance
between the nodes. Let X be the set of n i.i.d. sampled points
{x1, x2, . . . , xn}. Explicitly, we construct an undirected graph
Gn with points X as nodes and the weight value wij between
xi and xj defined as

wij =
1

n

d+ 2

ϵd/2+1αd
1[0,1]

(
∥xi − xj∥2

ϵ

)
, (9)

where ∥xi − xj∥ denotes the Euclidean distance between xi

and xj while αd is the unit ball volume in Rd. The indicator
function shows that two nodes can only be connected if they
are smaller than

√
ϵ away from each other. According to the

random geometric graph theory [22], the order of ϵ affects
the average degree of the nodes. That is, if ϵ is in the order
of O((log(n)/n)2/d), the average node degree is O(log(n)),
which falls in a relatively sparse regime. The graph Laplacian
Lϵ
n is defined as Lϵ

n = diag(An1)−An [30] with An, [An]ij =
wij standing for the adjacency matrix.

The relationship of graph Laplacian and LB operator can
be quantified in both the operator and spectral aspects. A non-
asymptotic difference bound can be obtained between the graph
Laplacian and the LB operator when they both operate on the
eigenfunctions of the LB operator.

Proposition 1 [31, Theorem 3.3] Suppose that M ∈ RN is
equipped with LB operator L with spectrum {λi,ϕi}∞i=1 and the

graph Gn sampled from M is equipped with graph Laplacian
Lϵ
n with edge weights set as (9) with ϵ = ϵ(n) > (log(n)/n)2/d.

Then with probability at least 1− δ, it holds that

|Lϵ
nϕi(x)− Lϕi(x)| ≤

(
C1

√
ln (2n/δ)

cnϵd+2
+ C2

√
ϵ

)
λ

d+2
4

i .

(10)
The constants C1, C2 depend on the volume of the manifold.

This point-wise upper bound indicates that when applied to
the eigenfunction ϕi, the difference is related to the number
of sampled points n as well as the corresponding eigenvalue
λi. This is due to the fact that eigenfunctions with higher
eigenvalues change faster and are harder to measure the
differences in high frequency domain [32].

With this operator difference bound, the difference bounds
of the spectrum of graph Laplacian Lϵ

n and the LB operator L
can also be derived based on Davis-Khan theorem [33].

Proposition 2 [31, Theorem 2.4, Theorem 2.6] Suppose that
M ∈ RN is equipped with LB operator L with spectrum
{λi,ϕi}∞i=1 and the graph Gn sampled from M is equipped
with graph Laplacian Lϵ

n with edge weights set as (9) with
ϵ = ϵ(n) > (log(n)/n)2/d, with the spectrum given by
{λϵ

i,n,ϕ
ϵ
i,n}ni=1. Fix some K ∈ N+, then with probability at

least 1− 2n exp (−cnϵd/2+2), we have

|λi − λϵ
i,n| ≤ CK,1

√
ϵ, ∥aiϕϵ

i,n − ϕi∥ ≤ CK,2

√
ϵ/θ, (11)

with ai ∈ {−1, 1} for all i < K and θ the eigengap of L,
i.e. θ = min1≤i≤K{λi−λi−1, λi+1−λi}. The constants CK,1,
CK,2 depend on λK , d and the volume of M.

We can observe from Proposition 2 that the eigenvalue and
eigenfunction difference bounds can only be given within a
limited spectrum, i.e. λi < λK . This is due to the fact that
eigenfunctions oscillate faster in high frequency domain and
are hard to approximate. This indicates that we need to pay
special attention to the high frequency domain when designing
the filters as the graph filters need to converge as well as
discriminate different frequency components.

We note that in the case of Proposition 1 and 2, ϵ is in the
order of (log(n)/n)2/d, which leads to the average node degree
scales with the order log(n). This ensures that our constructed
graphs are relatively sparse when d > 2.

IV. CONVERGENCE OF GNNS ON SPARSE GRAPHS

As we have the definition of manifold convolutional filter
parametric by the LB operator as (5) shows, we can transfer this
filter structure to the discrete graph Laplacian and approximate
the manifold filter with this newly defined graph filter. This
approximation can be quantified with a non-asymptotic error
bound, which can also be seen as the convergence rate of the
graph filter to the manifold filter. GNN, as a cascading structure
of graph filters and point-wise nonlinearities, can approximate
MNN with the convergence and approximation inherited from
the graph filters.



A. Graph Convolution on Sampled Manifolds

By fixing the filter impulse function h̃(t) in equation (5) and
replacing the LB operator L with the discrete graph Laplacian
Lϵ
n, we can write a graph filtering process in a continuous time

domain (instead of the discrete time domain defined in (1)),
which explicitly is

g =

∫ ∞

0

h̃(t)e−tLϵ
nfdt := h(Lϵ

n)f , g, f ∈ Rn. (12)

We can see this as an integration of the graph shift operations
with the GSO represented as e−Lϵ

n . The discrete graph signal f
can be obtained by a uniform sampling operator Pn operated on
manifold signal f , i.e. f = Pnf with f(xi) = f(xi), xi ∈ X .

With the spectrum of Lϵ
n denoted as {λϵ

i,n,ϕ
ϵ
i,n}ni=1, the

above graph filter can be reformalized in the spectral domain
by projecting on the eigenvectors as

g =

n∑
i=1

ĥ(λϵ
i,n)⟨f ,ϕϵ

i,n⟩L2(Gn)ϕ
ϵ
i,n. (13)

Together with (7), the spectral representations of the graph filter
and the manifold filter both depend fully on the spectrum of the
graph Laplacian and the LB operator respectively. Therefore,
the connection between graph filtering and manifold filtering
can be revealed based on the spectral relationship that we have
established in Proposition 2. We first look at the convergence
of graph filters to the manifold filters.

B. Graph Convolution Convergence

Considering that the convergence result in Proposition 2 is
limited within a range of spectrum while the spectrum of the LB
operator is infinite, we need to import a frequency dependent
filter to tackle the intractable frequency components in the high
frequency domain. Weyl’s law [34] reveals that the eigenvalues
of the LB operator tend to accumulate in high frequency domain,
which is explicitly stated as the following lemma.

Lemma 1 [35, Proposition 3] Consider a d-dimensional
manifold M ⊂ RN and let L be its LB operator with eigenvalues
{λk}∞k=1. Let C1 be an arbitrary constant and αd the volume
of the d-dimensional unit ball. Let Vol(M) denote the volume
of manifold M. For any α > 0 and d > 2, there exists N1,

N1 = ⌈(αd/C1)
d/(2−d)(CdVol(M))2/(2−d)⌉ (14)

such that, for all k > N1, λk+1 − λk ≤ α.

Based on the Weyl’s law, we can implement a spectrum par-
tition strategy as Definition 1 shows. The frequency difference
threshold filter – α-FDT filter defined in Definition 2 can realize
the α-separated spectrum.

Definition 1 [35, Definition 4] (α-separated spectrum) The
α-separated spectrum of the LB operator L is defined as a
partition Λ1(α) ∪ . . . ∪ ΛN (α) if it holds that |λi − λj | > α
for λi ∈ Λk(α) and λj ∈ Λl(α), k ̸= l.

Definition 2 [35, Definition 5] (α-FDT filter) The α-frequency
difference threshold (α-FDT) filter is defined as a filter h(L)
whose frequency response satisfies

|ĥ(λi)− ĥ(λj)| ≤ γk for all λi, λj ∈ Λk(α) (15)

with γk ≤ γ for some γ > 0 and k = 1, . . . , N .

Furthermore, the filter frequency response function needs to
be Lipschitz continous as addressed in Definition 3.

Definition 3 (Lipschitz filter) A filter is Ah-Lispchitz if its
frequency response is Lipschitz continuous with Lipschitz
constant Ah, i.e.

|ĥ(a)− ĥ(b)| ≤ Ah|a− b| for all a, b ∈ (0,∞). (16)

Equipped with these concepts and assumptions, the approx-
imation error bound can be derived to measure the output
difference between the graph filters and manifold filters, which
further can attest the convergence of the graph filters to the
manifold filters as presented in Theorem 1.

Theorem 1 (Convergence of graph filters) Suppose that M ∈
RN is equipped with LB operator L and the graph Gn sampled
from M is equipped with graph Laplacian Lϵ

n with edge weights
set as (9) with ϵ = ϵ(n) > (log(n)/n)2/d. Let h(·) be the
convolutional filter and assume the frequency response of filter
h is Ah Lipschitz continuous and α-FDT with α2 ≫ ϵ, α >
CM,dK

1−2/d and γ = C ′
K,2ϵ/α. Then with probability at least

1− 2n exp(−Cnϵd+4) it holds that

∥h(Lϵ
n)Pnf −Pnh(L)f∥L2(Gn)

≤
(
NC ′

K,2

α
+AhCK,1

)√
ϵ+ Cgc

√
log n

n
(17)

where N is the partition size of α-FDT filter and Cgc is related
with d and the volume of M.

Proof. See Appendix A.
The approximation upper bound for the output difference

between graph filters and manifold filters is in the order of
O((log(n)/n)1/d). This attests the convergence of the graph
filters on the relatively sparse graphs sampled from the under-
lying manifold with the convergence rate O((log(n)/n)1/d).
Besides this, we can observe that the error bound in (17) grows
with the manifold dimension d, which means that a higher
dimension makes the graph filters harder to approximate the
manifold filters. Moreover, the imported frequency dependent
filters can remove the limitation on the spectrum by setting α
large enough to group all the eigenvalues larger than λK as one
partition, with a smaller K leading to a larger α. The α-FDT
filter gives similar frequency responses to eigenvalues in the
same group, which can mitigate the divergence of high frequency
components. However, there exists a trade-off for this benefit. If
we fix the number of sampled points n, a larger α (i.e. a smaller
K) leads to a less discriminative filter as more eigenvalues are
supposed to be grouped and treated similarly, which makes the
high frequency components within the same partition cannot



be discriminated. Meanwhile, a larger α leads to a smaller
number of partitions as the number of singletons decrease,
which results in the decrease of the approximation error bound
shown in (17). The Lipschitz continuity constant of the filters
Ah affects approximation and discriminability a similar way.
Smaller Lipschitz constants decrease the approximation error
bound, but result in smoother filter functions that can give
similar frequency responses to different eigenvalues even in
different partitions. These indicate that graph filters cannot be
discriminative and approximative to the manifold filters at the
same time. That is to say, the graph filters cannot discriminate
all frequency components well and converge to manifold filters
fast at the same time. In the following we will show that this
trade-off phenomenon can be alleviated by the nonlinearity
functions in GNNs.

C. Convergence of GNNs

As GNNs are cascading structures of graph filters and
nonlinearities, they can inherit the convergence of graph filters
shown in Theorem 1. We first impose an assumption on the
continuity of nonlinearity function as the follows, which is
satisfied by most common nonlinearities (e.g., the ReLU, the
modulus and the sigmoid).

Assumption 1 (Normalized Lipschitz nonlinearity functions)
The nonlinearity function σ is normalized Lipschitz continuous,
i.e., |σ(a)− σ(b)| ≤ |a− b|, with σ(0) = 0.

The approximation error bound or convergence rate of GNNs
can be derived based on the result in Theorem 1, as presented
in the following theorem.

Theorem 2 Suppose that M ∈ RN is equipped with LB
operator L and the graph Gn sampled from M is equipped
with graph Laplacian Lϵ

n with edge weights set as (9) with
ϵ = ϵ(n) > (log(n)/n)2/d. Let Φ(H,L, ·) be an L-layer MNN
on M (8) with F0 = FL = 1 input and output features and
Fl = F, l = 1, 2, . . . , L−1 features per layer and Φ(H,Ln, ·)
be the MNN with the same architecture applied on geometric
graph Gn. The nonlinearity functions satisfy Assumption 1, it
holds that

∥Φ(H,Lϵ
n,Pnf)−PnΦ(H,L, f)∥L2(Gn)

≤ LFL−1

((
NC ′

K,2

α
+AhCK,1

)√
ϵ+ Cgc

√
log n

n

)
(18)

with high probability.

Proof. See Appendix B.
We now can come to the conclusion that the GNN on

the constructed relatively sparse graphs can converge to the
MNN in the order of O((log(n)/n)1/d). On one side, the
approximation error bound scales with the size of the neural
network architecture, which is due to the error propagation
through the networks. Specifically, the bound grows linearly
with the number of layers L and polynomially with the number
of features F where the rate is determined by L. On the other

side, the approximation error bound or the convergence result
inherits the trade-off possessed by the graph filters indicated in
Theorem 1. However, the nonlinearity functions in GNN can
mix the spectral components which means the high frequency
components can be shifted to low frequency domain and can
be later discriminated by the filters in the following layer. The
effects of nonlinearity functions have been discussed in neural
networks on graphs and manifold respectively in previous works
[17], [36]. The effects brought by the nonlinearities make the
GNN both approximative and discriminative, which lifts the
trade-off inserted by the graph filters.

With the non-asymptotic approximation error bound derived,
the transferability property for GNNs on the relaively sparse
graphs with different size from a common underlying manifold
can be immediately deduced based on the triangle inequality.
This property can attest that a trained GNN on a small graph
can be directly transferred to another different larger graph
sampled from the same manifold as long as they are constructed
with the same manner. Moreover, with the non-asymptotic
result, we can calculate the minimum number of sampled points
needed to satisfy the given approximation error tolerance. The
transferability property is further verified with simulations in
the following section.

V. SIMULATIONS

We verify our proved convergence results on the ModelNet10
[37] classification problem. This dataset includes meshed CAD
models from 10 different categories with 3,991 models for
training and 908 models for testing. We construct graphs
by sampling n points uniformly from the meshed models to
approximate the underlying models as shown in Figure 1. The
goal is to identify the chair models from other models.

Fig. 1: Graphs constructed with 300 sampled points

Learning architectures and experiment settings. We build
the relatively sparse graphs with sampled points seen as
nodes and the weights determined according to (9) with
ϵ = 0.001 as the threshold. The graph Laplacian can be
calculated accordingly. We compare the performances of three
architectures, which includes 2-layer Graph Filters (GF), 2-
layer graph neural networks (GNN) and 2-layer graph neural
networks with Lipschitz continuituous filters (Lipschitz GNN).
Each architecture contains F0 = 3 input features which are
each point’s 3-d coordinates, F1 = 64 and F2 = 32 output
features with K = 5 fiter taps. The nonlinearity function is
ReLU in GNN and Lipschitz GNN. We regularize the Lipschitz
continuity in Lipshitz GNN by adding a penalty term 0.3h′(λ)



to the loss function which is set as the cross-entropy loss. We
use an ADAM optimizer with the learning-rate as 0.005 and
the forgetting factors 0.9 and 0.999. We train each architecture
for 40 epochs with the batch size set as 10. We average the
estimation error rates by running 5 random dataset partitions.

Convergence verification. We first evaluate the convergence
results by training the architectures on graphs with n =
300, 400, 500, 600, 700, 800, 900 sampled points and comparing
the graph outputs between the trained architectures on graphs
with size n and on a large graph with size 1, 000. The differences
of the graph outputs is shown in Figure 2, where we can observe
the convergence as the size of the trained graph grows. This
proves our statement in Theorem 2 if we see the large enough
graph as a good approximation of the underlying manifold.
We can see that Lipschitz GNN performs better than GNN
as continuous filter functions have better approximation and
smaller convergence rate while GNN outperforms GF with the
nonlinearity employed.
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Fig. 2: Differences of the outputs of trained Lipschitz GNN,
GNN and GF.

Transferability verification. We further justify the transfer-
ability by testing the trained architectures on a large graph
with 1, 000 sampled points. As Figure 4 shows, we train
the architectures on graphs with fewer sampled points with
n = 300, 500, 700, 900 (Figure 3a and 4a) and directly
implemented on graphs with a large set of sampled points
(Figure 3b and 4b). Note that due to the non-scability of the
final linear readout layer, we only retrain the final linear layer
while keeping the graph filter coefficients unchanged. The
classification error rates are presented in Table I where we
can observe that the trained architectures still can have good
performances with Lipschitz GNN outperforms GNN while
GNN is better than GF. This verifies that the filter continuity
and nonlinearity can help improve the convergence and the
transferability. Plus the architectures trained on graphs with
more sampled points have better performances on the large
graph. This is because architectures trained on larger graphs
approximate better to manifold filters or MNNs.

(a) Trained graph (b) Tested graph

Fig. 3: Different sampled points on a chair model

(a) Trained graph (b) Tested graph

Fig. 4: Different sampled points on a chair model

GF GNN Lipschitz GNN
n = 300 19.83± 5.94 7.74± 4.05 7.68± 3.75
n = 500 21.97± 4.17 10.10± 1.40 8.60± 2.95
n = 700 13.85± 3.81 7.45± 4.03 8.02± 2.77
n = 900 16.62± 2.38 7.92± 3.14 7.44± 3.30

TABLE I: Classification error rates (%) for model ‘chair’ when
testing the architectures trained on sparse geometric graphs
with n = 300, 500, 700, 900 to sparse geometric graphs with
n = 1, 000. Average over 5 data realizations.

VI. CONCLUSION

In this paper, we implement the definition of manifold
convolutional filters with an integration of Laplace-Beltrami
operator exponentials to process manifold signals. The manifold
model is accessed by a set of i.i.d. uniformly sampled points
over the manifold. We construct a relatively sparse graph to
approximate the underlying manifold. With the approximation
error bounds of discrete graph Laplacians to the LB operator
in the spectral domain, we can prove the graph filter can
approximate the manifold filter with a non-asymptotic error
bound, which also provides the convergence rate of graph
filters to the manifold filters. The approximation error bound
shows a trade-off between the discriminability of the graph
filters and the approximation (or convergence) to the manifold
filters. GNNs made up of graph filters and nonlinearities
can lift this trade-off due to the frequency mixing effects
brought by nonlinearities. We conclude that the GNNs can
therefore both converge to MNNs and discriminate the frequency
components in high frequency domain well. We further analyze
the transferability property of GNNs which allows a trained
GNN directly implemented on another graph. We finally verify
our convergence and transferability results numerically with a
point-cloud classification problem.



REFERENCES

[1] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for
decentralized multi-robot path planning,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
11 785–11 792.

[2] E. Tolstaya, J. Paulos, V. Kumar, and A. Ribeiro, “Multi-robot coverage
and exploration using spatial graph neural networks,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE,
2021, pp. 8944–8950.

[3] K. Atz, F. Grisoni, and G. Schneider, “Geometric deep learning on
molecular representations,” Nature Machine Intelligence, vol. 3, no. 12,
pp. 1023–1032, 2021.

[4] S. Li, J. Zhou, T. Xu, D. Dou, and H. Xiong, “Geomgcl: Geometric graph
contrastive learning for molecular property prediction,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 36, no. 4, 2022, pp.
4541–4549.

[5] W. He, Z. Jiang, C. Zhang, and A. M. Sainju, “Curvanet: Geometric
deep learning based on directional curvature for 3d shape analysis,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 2214–2224.

[6] J. Zeng, G. Cheung, M. Ng, J. Pang, and C. Yang, “3d point cloud
denoising using graph laplacian regularization of a low dimensional
manifold model,” IEEE Transactions on Image Processing, vol. 29, pp.
3474–3489, 2019.

[7] Z. Wang, L. Ruiz, M. Eisen, and A. Ribeiro, “Stable and transferable
wireless resource allocation policies via manifold neural networks,” in
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2022, pp. 8912–8916.

[8] R. Shelim and A. S. Ibrahim, “Geometric machine learning over
riemannian manifolds for wireless link scheduling,” IEEE Access, vol. 10,
pp. 22 854–22 864, 2022.

[9] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[10] S. Mallat, “Group invariant scattering,” Communications on Pure and
Applied Mathematics, vol. 65, no. 10, pp. 1331–1398, 2012.
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APPENDIX

A. Proof of Theorem 1

We first write out the filter representation as

∥h(Lϵ
n)Pnf −Pnh(L)f∥

≤

∥∥∥∥∥
∞∑
i=1

ĥ(λϵ
i,n)⟨Pnf,ϕ

ϵ
i,n⟩Gn

ϕϵ
i,n −

∞∑
i=1

ĥ(λi)⟨f,ϕi⟩MPnϕi

∥∥∥∥∥
(19)

We denote the index of partitions that contain a single
eigenvalue as a set Ks (|Ks| = Ns) and the rest as a set
Km (|Km| = Nm). We decompose the α-FDT filter function
as ĥ(λ) = h(0)(λ) +

∑
l∈Km

h(l)(λ) as

h(0)(λ) =

{
ĥ(λ)−

∑
l∈Km

ĥ(Cl) λ ∈ [Λk(α)]k∈Ks

0 otherwise
(20)

h(l)(λ) =

 ĥ(Cl) λ ∈ [Λk(α)]k∈Ks

ĥ(λ) λ ∈ Λl(α)
0 otherwise

(21)



with Cl some constant in Λl(α). With the triangle inequality,
we start by analyzing the output difference of h(0)(λ) as∥∥∥∥∥

∞∑
i=1

h(0)(λϵ
i,n)⟨Pnf,ϕ

ϵ
i,n⟩Gnϕ

ϵ
i,n −

∞∑
i=1

h(0)(λi)⟨f,ϕi⟩MPnϕi

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
i=1

(
h(0)(λϵ

i,n)− h(0)(λi)
)
⟨Pnf,ϕ

ϵ
i,n⟩Gn

ϕϵ
i,n

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
i=1

h(0)(λi)
(
⟨Pnf,ϕ

ϵ
i,n⟩Gnϕ

ϵ
i,n − ⟨f,ϕi⟩MPnϕi

)∥∥∥∥∥ .
(22)

The first term in (22) can be bounded by leveraging the
Ah-Lipschitz continuity of the frequency response. From the
eigenvalue difference in Proposition 2, we can claim that for
each eigenvalue λi ≤ λK , we have

|λϵ
i,n − λi| ≤ CK,1

√
ϵ. (23)

The square of the first term is bounded as∥∥∥∥∥
∞∑
i=1

(h(0)(λϵ
i,n)− h(0)(λi))⟨Pnf,ϕ

ϵ
i,n⟩Gnϕ

ϵ
i,n

∥∥∥∥∥
2

≤
∞∑
i=1

|h(0)(λϵ
i,n)− h(0)(λi)|2|⟨Pnf,ϕ

ϵ
i,n⟩Gn |2 (24)

≤
∞∑
i=1

A2
h|λϵ

i,n − λi|2∥Pnf∥2 ≤ A2
hC

2
K,1ϵ. (25)

The second term in (22) can be bounded combined with the
convergence of eigenfunctions in (27) as∥∥∥∥∥

∞∑
i=1

h(0)(λi)
(
⟨Pnf,ϕ

ϵ
i,n⟩Gn

ϕϵ
i,n − ⟨f,ϕi⟩MPnϕi

) ∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
i=1

h(0)(λi)
(
⟨Pnf,ϕ

ϵ
i,n⟩Gn

ϕϵ
i,n − ⟨Pnf,ϕ

ϵ
i,n⟩Gn

Pnϕi

) ∥∥∥∥∥
+

∥∥∥∥∥
∞∑
i=1

h(0)(λi)
(
⟨Pnf,ϕ

ϵ
i,n⟩GnPnϕi − ⟨f,ϕi⟩MPnϕi

)∥∥∥∥∥
(26)

From the convergence stated in Theorem 2, we have

∥aiϕϵ
i,n − ϕi∥ ≤ CK,2

√
ϵ/θ, (27)

with the eigengap θ ≥ α under the α-FDT filter. Therefore, the
first term in (26) can be bounded as∥∥∥∥∥

∞∑
i=1

h(0)(λi)
(
⟨Pnf,ϕ

ϵ
i,n⟩Gn

ϕϵ
i,n − ⟨Pnf,ϕ

ϵ
i,n⟩MPnϕi

)∥∥∥∥∥
≤

Ns∑
i=1

∥Pnf∥∥ϕϵ
i,n −Pnϕi∥ ≤ NsCK,2

α

√
ϵ. (28)

The last equation comes from the definition of norm in L2(Gn).

The second term in (26) can be written as∥∥∥∥∥
∞∑
i=1

h(0)(λϵ
i,n)(⟨Pnf,ϕ

ϵ
i,n⟩Gn

Pnϕi − ⟨f,ϕi⟩MPnϕi)

∥∥∥∥∥
≤

∞∑
i=1

|h(0)(λϵ
i,n)|

∣∣⟨Pnf,ϕ
ϵ
i,n⟩Gn

− ⟨f,ϕi⟩M
∣∣ ∥Pnϕi∥.

(29)

Because {x1, x2, · · · , xn} is a set of uniform sampled points
from M, based on Theorem 19 in [38] we can claim that∣∣⟨Pnf,ϕ

ϵ
i,n⟩Gn

− ⟨f,ϕi⟩M
∣∣ = O

(√
log n

n

)
. (30)

Taking into consider the boundedness of frequency response
|h(0)(λ)| ≤ 1 and the bounded energy ∥Pnϕi∥. Therefore, we
have∥∥∥∥∥

∞∑
i=1

ĥ(λϵ
i,n)

(
⟨Pnf,ϕ

ϵ
i,n⟩Gn

− ⟨f,ϕi⟩M
)
Pnϕi

∥∥∥∥∥ = O

(√
log n

n

)
.

Combining the above results, we can bound the output
difference of h(0). Then we need to analyze the output difference
of h(l)(λ) and bound this as∥∥∥Pnh

(l)(L)f − h(l)(Lϵ
n)Pnf

∥∥∥
≤
∥∥∥(ĥ(Cl) + γ)Pnf − (ĥ(Cl)− γ)Pnf

∥∥∥ ≤ 2γ∥Pnf∥,
(31)

where h(l)(L) and h(l)(Lϵ
n) are filters with filter function

h(l)(λ) on the LB operator L and graph Laplacian Lϵ
n re-

spectively. Combining the filter functions, we can write

∥Pnh(L)f − h(Lϵ
n)Pnf∥

=

∥∥∥∥∥Pnh
(0)(L)f +Pn

∑
l∈Km

h(l)(L)f−

h(0)(Lϵ
n)Pnf −

∑
l∈Km

h(l)(Lϵ
n)Pf

∥∥∥∥∥ (32)

≤ ∥Pnh
(0)(L)f − h(0)(Lϵ

n)Pnf∥+∑
l∈Km

∥Pnh
(l)(L)f − h(l)(Lϵ

n)Pnf∥ (33)

≤ AhCK,1

√
ϵ+NsCK,2

√
ϵ+Nmγ + Cgc

√
log(n)

n

∥h(Lϵ
n)Pnf −Pnh(L)f∥

≤
(
NCK,2

α
+AhCK,1

)√
ϵ+ Cgc

√
log n

n
(34)



B. Proof of Theorem 2

To bound the output difference of MNNs, we need to write
in the form of features of the final layer

∥Φ(H,Lϵ
n,Pnf)−PnΦ(H,L, f))∥ =

∥∥∥∥∥
FL∑
q=1

xq
n,L −

FL∑
q=1

Pnf
q
L

∥∥∥∥∥
≤

FL∑
q=1

∥∥∥xq
n,L −Pnf

q
L

∥∥∥ . (35)

By inserting the definitions, we have∥∥∥xp
n,l −Pnf

p
l

∥∥∥
=

∥∥∥∥∥∥σ
Fl−1∑

q=1

hpq
l (Lϵ

n)x
q
n,l−1

−Pnσ

Fl−1∑
q=1

hpq
l (L)fq

l−1

∥∥∥∥∥∥
(36)

with xn,0 = Pnf as the input of the first layer. With a
normalized point-wise Lipschitz nonlinearity, we have

∥xp
n,l −Pnf

p
l ∥ ≤

∥∥∥∥∥∥
Fl−1∑
q=1

hpq
l (Lϵ

n)x
q
n,l−1 −Pn

Fl−1∑
q=1

hpq
l (L)fq

l−1

∥∥∥∥∥∥
(37)

≤
Fl−1∑
q=1

∥∥∥hpq
l (Lϵ

n)x
q
n,l−1 −Pnh

pq
l (L)fq

l−1

∥∥∥
(38)

The difference can be further decomposed as

∥hpq
l (Lϵ

n)x
q
n,l−1 −Pnh

pq
l (L)fq

l−1∥
≤ ∥hpq

l (Lϵ
n)x

q
n,l−1 − hpq

l (Lϵ
n)Pnf

q
l−1

+ hpq
l (Lϵ

n)Pnf
q
l−1 −Pnh

pq
l (L)fq

l−1∥ (39)

≤
∥∥∥hpq

l (Lϵ
n)x

q
n,l−1 − hpq

l (Lϵ
n)Pnf

q
l−1

∥∥∥
+
∥∥hpq

l (Lϵ
n)Pnf

q
l−1 −Pnh

pq
l (L)fq

l−1

∥∥ (40)

The second term can be bounded with (17) in Theorem 1. The
first term can be decomposed by Cauchy-Schwartz inequality
and non-amplifying of the filter functions as∥∥∥xp

n,l −Pnf
p
l

∥∥∥ ≤
Fl−1∑
q=1

Cper∥xq
n,l−1∥+

Fl−1∑
q=1

∥xq
l−1 −Pnf

q
l−1∥,

(41)

where Cper representing the constant in the error bound of
manifold filters in (17). To solve this recursion, we need to
compute the bound for ∥xp

l ∥. By normalized Lipschitz continuity
of σ and the fact that σ(0) = 0, we can get

∥xp
l ∥ ≤

∥∥∥∥∥∥
Fl−1∑
q=1

hpq
l (Lϵ

n)x
q
l−1

∥∥∥∥∥∥ ≤
Fl−1∑
q=1

∥hpq
l (Lϵ

n)∥ ∥x
q
l−1∥

≤
Fl−1∑
q=1

∥xq
l−1∥ ≤

l−1∏
l′=1

Fl′

F0∑
q=1

∥xq∥. (42)

Insert this conclusion back to solve the recursion, we can get∥∥∥xp
n,l −Pnf

p
l

∥∥∥ ≤ lCper

(
l−1∏
l′=1

Fl′

)
F0∑
q=1

∥xq∥. (43)

Replace l with L we can obtain

∥Φ(H,Lϵ
n,Pnf)−PnΦ(H,L, f))∥

≤
FL∑
q=1

(
LCper

(
L−1∏
l′=1

Fl′

)
F0∑
q=1

∥xq∥

)
. (44)

With F0 = FL = 1 and Fl = F for 1 ≤ l ≤ L − 1, then we
have

∥Φ(H,Lϵ
n,Pnf)−PnΦ(H,L, f)) ≤ LFL−1Cper, (45)

which concludes the proof.
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